Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/S1807-25772013000400007
Revista de Odontologia da UNESP
Original Article

Inorganic elemental analysis and identification of residual monomers released from different glass ionomer cements in cell culture medium

Análise elementar inorgânica e identificação de monômeros residuais orgânicos liberados por diferentes cimentos de ionômero de vidro

Tanaka, M.H.; Alécio, Alberto Camilo; Flumignan, D. L.; Oliveira, José Eduardo de; Giro, Elisa Maria Apda.

Downloads: 3
Views: 1033

Abstract

Introduction: Glass ionomer cements (GICs) release inorganic elements and organic residual monomers with the potential for deleterious effects on pulp cells. Objective: To identify and quantify inorganic elements present in different GICs and released components from these materials in cell culture medium. Material and method: Samples of two resin-modified GICs for base/liner (Vitrebond and Fuji Lining LC), two resin-modified restorative GICs (Vitremer and Fuji II LC) and two conventional restorative GICs (Ketac Fil Plus and Ketac Molar Easymix) were prepared and analyzed by Energy-Dispersive X-Ray Fluorescence Spectrometry (EDXRF). Extracts of these materials were obtained by immersion of each sample in separate containers of DMEM for 24 h (total surfaceliquid ratio = 45.7 mm2/mL). The extracts were analyzed by EDXRF and Gas Chromatography-Mass Spectrometry (GC-MS). Result: Higher percentages of strontium, silicon and aluminum were identified in Vitrebond, Vitremer, Fuji Lining LC, Fuji II LC, and Ketac Fil Plus, while zinc was detected only in Vitrebond. Ketac Molar Easymix presented a greater atomic composition of lanthanum, calcium, aluminum and silicon. Strontium was detected in the extracts from all materials except Ketac Molar Easymix; calcium was present in extracts from Ketac Fil Plus; zinc only in Vitrebond; and silicon in Fuji II LC extract. The analysis by GC-MS detected 2-hydroxyethyl-methacrylate (HEMA) in the extracts from all resin-modified GICs, and iodine benzene was detected only in the Vitrebond extract. Conclusion: Of the GICs sampled, Vitrebond released the highest number of components with cytotoxic potential.

Keywords

Glass ionomer cements, inorganic chemicals

Resumo

Introdução: Os cimentos de ionômero de vidro (CIVs) liberam elementos inorgânicos e monômeros orgânicos residuais que têm o potencial de causar efeitos deletérios sobre as células pulpares. Objetivo: Identificar e quantificar os elementos inorgânicos presentes em diferentes CIVs, bem como os componentes liberados por estes materiais em meio de cultura celular. Material e método: Espécimes cilindricos de dois CIVs modificados por resina para base/forramento (Vitrebond e Fuji Lining LC), dois CIVs modificados por resina restauradores (Vitremer e Fuji II LC) e dois CIVs convencionais restauradores (Ketac Fil Plus e Ketac Molar Easymix) foram preparados e analisados por Espectrometria de Fluorescência de Raios X por Energia Dispersiva (EDXRF). Em seguida, extratos de 24h desses materiais foram obtidos e analisados por EDXRF e por Cromatografia Gasosa/Espectrometria de Massa (CG/EM). Resultado: Os elementos inorgânicos identificados em maior porcentagem nos CIVs Vitrebond, Fuji Lining LC, Vitremer, Fuji II LC e Ketac Fil Plus foram estrôncio, silício e alumínio, enquanto o zinco foi detectado apenas no Vitrebond. O Ketac Molar Easymix apresentou maior porcentagem dos elementos lantânio, cálcio, alumínio e silício. Estrôncio foi detectado nos extratos de todos os materiais, exceto no Ketac Molar Easymix; cálcio estava presente no extrato do Ketac Fil Plus; zinco apenas no Vitrebond; e silício no extrato do Fuji II LC . O HEMA foi identificado nos extratos de todos os CIVs modificados por resina, e o iodobenzeno, somente no Vitrebond. Conclusão: Entre os CIVs estudados, o Vitrebond é o que libera mais componentes com potencial citotóxico.

Palavras-chave

Cimentos de ionômeros de vidro, compostos inorgânicos

References

 


1. Tyas MJ. Placement and replacement of restorations by selected practioners. Aust Dent J. 2005; 50: 81-9. PMid:16050086. http://dx.doi.org/10.1111/j.1834-7819.2005.tb00345.x

2. Mjör IA. Clinical diagnosis of recurrent caries. J Am Dent Assoc. 2005; 136: 1426-33. PMid:16255468.

3. Wilson AD, Kent BE. A new translucent cement for dentistry: the glass-ionomer cement. Br Dent J. 1972; 132(4): 133-5. http://dx.doi.org/10.1038/sj.bdj.4802810

4. Wilson AD. Resin-modified glass-ionomer cements. Int J Prosthodont. 1990; 3(5): 215-9.

5. Smales RJ, Gao W. In vitro caries inhibition at enamel margins of glass ionomer restauratives developed for the ART approach. J Dent. 2000; 28(4): 249-56. http://dx.doi.org/10.1016/S0300-5712(99)00071-8

6. Hayacibara MF, Ambrosano GMB, Cury JA. Simultaneous release of fluoride and aluminium from dental materials in various immersiom media. Oper Dent. 2004; 29(1): 16-22. PMid:14753327.

7. Exterkate RA, Damen JJ, Ten Cate JM. Effect of fluoride-releasing filling materials on underlying dentinal lesions in vitro. Caries Res. 2005; 39(6): 509-13. PMid:16251797. http://dx.doi.org/10.1159/000088188

8. Forss H. Release of fluoride and other elements from resin-modified glass-ionomers in neutral and acidic conditions. J Dent Res. 1993; 72: 1257-62. PMid:8360372. http://dx.doi.org/10.1177/00220345930720081601

9. Czarnecka B, Limanowska-Shaw H, Nicholson JW. Buffering and ion-release by a glass-ionomer cement under near-neutral and acidic conditions. Biomaterials. 2002; 23: 2783-8. http://dx.doi.org/10.1016/S0142-9612(02)00014-5

10. Hazar-Yoruc B, Bavbek AB, Özcan M. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions. Dent Mater J. 2012; 31(6):1068-74. PMid:23207217. http://dx.doi.org/10.4012/dmj.2012-115

11. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res. 1998; 77(12): 2012-9. PMid:9839790. http://dx.doi.org/10.1177/00220345980770121001

12. Stanislawski L, Daniau X, Lauti A, Goldberg M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass ionomer cements. J Biomed Mater Res. 1999; 49(3): 277-88. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:3<277::AID-JBM11>3.0.CO;2-T

13. Costa CAS, Hebling J, Garcia-Godoy F, Hanks CT. In vitro citotoxicity of five glass-ionomer cements. Biomaterials. 2003; 24(21): 3853-8. http://dx.doi.org/10.1016/S0142-9612(03)00253-9

14. Nicholson JW, Czarnecka B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent Mater. 2008 Dec; 24(12):1702-8. PMid:18539324. http://dx.doi.org/10.1016/j.dental.2008.04.005

15. Kanjevac T, Milovanovic M, Volarevic V, Lukic ML, Arsenijevic N, Markovic D, et al. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Med Chem. 2012 Jan; 8(1):40-5. PMid:22420549. http://dx.doi.org/10.2174/157340612799278351

16. Selimović-Dragaš M, Huseinbegović A, Kobašlija S, Hatibović-Kofman S. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements. Bosn J Basic Med Sci. 2012 Nov; 12(4):273-8. PMid:23198945.

17. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int. 1994; 25(9): 587-9. PMid:7568709.

18. Kan KC, Messer LB, Messer HH. Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J Dent Res. 1997; 76(8): 1502-7. PMid:9240387. http://dx.doi.org/10.1177/00220345970760081301

19. Lönnroth EC, Dahl JE. Cytotoxicity of dental glass ionomers evaluated using dimethylthiazol diphenyltetrazolium and neutral red tests. Acta Odontol Scand. 2001; 59: 34-9. http://dx.doi.org/10.1080/000163501300035760

20. Kawai K, Takaoka T. Fluoride, hydrogen ion and HEMA release from light-cured GIC restoratives. Am J Dent. 2002; 15: 149-52. PMid:12469750.

21. Upadhyay S, Rao A, Shenoy R. Comparison of the amount of fluoride release from nanofilled resin modified glass ionomer, conventional and resin modified glass ionomer cements. J Dent (Tehran). 2013 Mar; 10(2):134-40.

22. Stanislawski L, Soheili-Majd E, Perianin A, Goldberg M. Dental restorative biomaterials induce glutathione depletion in cultured human gingival fibroblast: protective effect of N-acetyl cysteine. J Biomed Mater Res. 2000; 51: 469-74. http://dx.doi.org/10.1002/1097-4636(20000905)51:3<469::AID-JBM22>3.0.CO;2-B

23. Soheili Majd E, Goldberg M, Stanislawski L. In vitro effects of ascorbate and Trolox on the biocompatibility of dental restorative materials. Biomaterials. 2003; 24: 3-9. http://dx.doi.org/10.1016/S0142-9612(02)00221-1

24. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Invest. 2008; 12: 1-8. PMid:18040729. http://dx.doi.org/10.1007/s00784-007-0162-8

25. Felton DA, Cos CF, Odom M, Kanoy BE. Pulpal response to chemically cured and experimental light-cured glass ionomer cavity liners. J Prosthet Dent. 1991; 65: 704-12. http://dx.doi.org/10.1016/0022-3913(91)90210-N

26. Fujisawa S, Kadoma Y, Komoda Y. 1H and 13C NMR studies of the interaction of eugenol, phenol, and triethyleneglycol dimethacrylate with phospholipids liposomes as a model system for odontoblast membranes. J Dent Res. 1988; 67: 1438-41. PMid:3183163. http://dx.doi.org/10.1177/00220345880670111501

27. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and permeability of HEMA. J Endod. 1996; 22(5): 244-8. http://dx.doi.org/10.1016/S0099-2399(06)80141-X

28. Kaga M, Noda M, Ferracane JL, Nakamura W, Oguchi H, Sano H. The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dent Mater. 2001; 17: 333-9. http://dx.doi.org/10.1016/S0109-5641(00)00091-9

29. Chang HH, Guo MK, Kasten FH, Chang MC, Huang GF, Wang YL, et al. Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials. 2005; 26: 745-53. PMid:15350779. http://dx.doi.org/10.1016/j.biomaterials.2004.03.021

30. Gerzina TM, Hume WR. Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent. 1996; 24(1-2): 125-8. http://dx.doi.org/10.1016/0300-5712(95)00036-4

31. Hamid A, Hume WR. The effect of dentine thickness on diffusion of resin monomers in vitro. J Oral Rehabil. 1997; 24: 20-5. http://dx.doi.org/10.1046/j.1365-2842.1997.00490.x

32. Geurtsen W, Spahl W, Muller K, Leyhausen G. Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J Biomed Mater Res. 1999; 48: 772-7. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:6<772::AID-JBM2>3.0.CO;2-X

33. Becher R, Kopperud HM, Al RH, Samuelsen JT, Morisbak E, Dahlman HJ, et al. Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts. Dent Mater. 2006; 22: 630-40. PMid:16223522. http://dx.doi.org/10.1016/j.dental.2005.05.013

 

588019597f8c9d0a098b50e5 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections