Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/S1807-25772013000300006
Revista de Odontologia da UNESP
Original Article

Avaliação em curto e médio prazo da sorção e da solubilidade de resinas compostas à base de metacrilato e de silorano em saliva artificial

Evaluation of short- and medium-term sorption and solubility of methacrylate or silorane-based composite resins in artificial saliva

Porto, Isabel Cristina C. de M.; Almeida, Amanda Gomes A.

Downloads: 1
Views: 983

Resumo

Introdução: A absorção/adsorção de moléculas de água por monômeros hidrofílicos dentro de materiais resinosos expostos à umidade da boca pode resultar em degradação. Objetivo: Este estudo avaliou sorção e solubilidade de resinas compostas à base de metacrilato e silorano em contato com saliva artificial, nos períodos de um dia (curto prazo), e 30 e 90 dias (médio prazo). Material e método: Sessenta corpos de prova foram confeccionados com as resinas Filtek Z250 e Filtek P90 Silorano (3M/ESPE), e depois imersos em saliva artificial a 37 ± 1 °C durante um, 30 e 90 dias. Os dados foram analisados usando-se ANOVA um fator/dois fatores seguido dos testes Tukey ou Tamhane (α = 0,05). Resultado: As médias de sorção das duas resinas aumentaram com o tempo (p = 0,001). A sorção de Z250 (1 e 90 d) foi significativamente maior do que de P90 (p = 0,008), com valores semelhantes após 30 dias. A solubilidade das resinas também aumentou com o tempo, com diferença significativa entre todos os períodos (p = 0,001), exceto para a resina P90 (entre 1 e 30 d). Não houve diferença estatística significante entre os grupos Z250 (1 d) e P90 (1 dia), Z250 (1 d) e P90 (30 d), e Z250 (30 d) e P90 (90 d). Para os demais pares, comprovaram-se diferenças significativas (p < 0,001). Conclusão: As propriedades de sorção e solubilidade das resinas compostas testadas foram influenciadas pelo tempo de exposição à saliva artificial. O silorano teve desempenho ora melhor ora semelhante à resina de metacrilato.

Palavras-chave

Absorção, resinas compostas, resinas de silorano, solubilidade

Abstract

Introduction: The absorption/adsorption of water molecules by hydrophilic monomers within the resinous material exposed to the humid environment of the mouth may result in degradation. Objective: This study evaluated the sorption and solubility of methacrylate-based resin and silorane in contact with artificial saliva after 1 day (short‑term), 30 days and 90 days (medium-term). Material and method: Sixty samples were prepared with Filtek Z250 and Filtek P90 Silorano (3M/ESPE) and then immersed in artificial saliva at 37 ± 1 °C for 1, 30 and 90 days. Data were analyzed using one-way/two-way ANOVA followed by the Tukey or Tamhane tests (α = 0.05). Result: The sorption and solubility of two resins increased with the evaluation time (p = 0.001). Sorption of Z250 (at 1 and 90 days) was significantly higher than that of P90 ( p = 0.008), and similar values were registered at 30 days. Resin solubility also increased with time and there were significant differences for all time periods (p = 0.001), except for P90 at 1 and 30 days. There were no significant differences between Z250 (1 day) and P90 (1 day), Z250 (1 day) and P90 (30 day), and Z250 (30 days) and P90 (90 days). Significant differences were shown for other pairings (p < 0.001). Conclusion: The solubility and sorption properties of the composites tested were influenced by time of exposure to artificial saliva. Silorane performed better than or similar results to methacrylate-based resin.

Keywords

Absorption, composite resins, silorane resins, solubility

References

 


1. Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater. 2005;21:36-42. PMid:15681000. http://dx.doi.org/10.1016/j.dental.2004.10.004

2. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res. 2000;53:353-61. http://dx.doi.org/10.1002/1097-4636(2000)53:4<353::AID-JBM9>3.0.CO;2-B

3. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure of degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23:1819-29. http://dx.doi.org/10.1016/S0142-9612(01)00308-8

4. Navarra CO, Cadenaro M, Armstrong SR, Jessop J, Antoniolli F, Sergo V, et al. Degree of conversion of Filtek Silorane adhesive system and Clearfil SE Bond within the hybrid and adhesive layer: an in situ Raman analysis. Dent Mater. 2010;25:1178-85. PMid:19570569. http://dx.doi.org/10.1016/j.dental.2009.05.009

5. Reis A. Materiais Dentários restauradores diretos: dos fundamentos à aplicação clínica. São Paulo: Santos; 2007.

6. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composite. Dent Mater. 2005;21:68-74. PMid:15681004. http://dx.doi.org/10.1016/j.dental.2004.10.007

7. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med. 2001;12:136-51. PMid:11345524. http://dx.doi.org/10.1177/10454411010120020401

8. Al-Boni R, Raja OM. Microleakege evaluation of silorane based composite versus methacrylate based composite. J Conserv Dent. 2010;13:152-5. PMid:21116392 PMCid:2980613. http://dx.doi.org/10.4103/0972-0707.71649

9. Hahnel S, Henrich A, Bürgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent. 2010;35:412-9. PMid:20672725. http://dx.doi.org/10.2341/09-337-L

10. Kopperud HM, Schmidt M, Kleven IS. Elution of substances from a silorane-based dental composite. Eur J Oral Sci. 2010;118:100-2. PMid:20156272. http://dx.doi.org/10.1111/j.1600-0722.2009.00697.x

11. Eick JD, Smith RE, Pinzino CS, Kostoryz EL. Stability of silorane dental monomers in aqueous systems. J Dent. 2006;34:405-10. PMid:16288948. http://dx.doi.org/10.1016/j.jdent.2005.09.004

12. Palin WM, Fleming GJP, Burke FJT, Marquis PM, Randall RC. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dent Mater. 2005;21:852-63. PMid:15935464. http://dx.doi.org/10.1016/j.dental.2005.01.004

13. Boaro LC, Gonçalves F, Guimarães TC, Ferracane JL, Pfeifer CS, Braga RR. Sorption, solubility, shrinkage and mechanical properties of "low-shrinkage" commercial resin composites. Dent Mater. 2013. http://dx.doi.org/10.1016/j.dental.2013.01.006 . http://dx.doi.org/10.1016/j.dental.2013.01.006

14. Schneider LFJ, Cavalcante LM, Silikas N, Watts DC. Degradation resistance of silorane, experimental ormocer and dimethacrylate resin-based dental composites. J Oral Sci. 2011;53:413-9. PMid:22167024. http://dx.doi.org/10.2334/josnusd.53.413

15. Toledano M, Osorio R, Osorio E, Fuentes V, Prati C, Garcia-Godoy F. Sorption and solubility resin-based restorative dental materials. J Dent. 2003;31:43-50. http://dx.doi.org/10.1016/S0300-5712(02)00083-0

16. Heintze SD, Zimmerli B. Relevance of in-vitro tests of adhesive and composite dental materials. Part 2: non-standardized tests of composite materials. Schweiz Monatsschr Zahnmed. 2011;121:916-30. PMid:22025204.

17. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water - effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42:465-72. http://dx.doi.org/10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F

18. Wei Y-J, Silikas N, Zhang Z-T, Watts DC. Diffusion and concurrent solubility of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27:197-205. PMid:21084109. http://dx.doi.org/10.1016/j.dental.2010.10.014

19. International Organization for Standardization. ISO 4049: Dentistry polymer-based filling, restorative and luting materials. Switzerland; 2009.

20. Dietschi D, Campanile G, Holz J, Meyer JM. Comparison of the color stability of ten new-generation composites: an in vitro study. Dent Mater. 1994;10:353-62. http://dx.doi.org/10.1016/0109-5641(94)90059-0

21. Örtengren U, Andersson F, Elgh U, Terselius B, Karlsson S. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent. 2001;29:35-41. http://dx.doi.org/10.1016/S0300-5712(00)00055-5

22. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211-22. E-pub 2005 Aug 8.

23. Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63:1248-54. PMid:6592209. http://dx.doi.org/10.1177/00220345840630101701

24. Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006;22:1143-9. PMid:16376422. http://dx.doi.org/10.1016/j.dental.2005.10.009

25. Musanje L, Darvell BW. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dent Mater. 2003;19:414-22. http://dx.doi.org/10.1016/S0109-5641(02)00085-4

26. Söderholm K-JM, Mukherjee R, Longmate J. Filler leachability of composites stored in distilled water or artificial saliva. J Dent Res. 1996;75:1692-9. http://dx.doi.org/10.1177/00220345960750091201

 

588019557f8c9d0a098b50d8 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections