Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.28415
Revista de Odontologia da UNESP
Original Article

Levobupivacaine induces vasodilatation, but not vasoconstriction, in rat mesenteric artery

Levobupivacaína induz vasodilatação, mas não vasoconstrição em artéria mesentérica de rato

Menezes, Liciane dos Santos; Souza, Liane Maciel de Almeida; Santos, Márcio Roberto Viana dos; Mendonça, Patrícia Santos Cunha; Moreira, Ítalo José Alves; Oliveira, Allan Carlos Araújo de

Downloads: 0
Views: 1196

Abstract

Introduction: Levobupivacaine (LEVO) can replace analgesia because it exhibits low toxicity and causes minor vasoconstriction, enabling its use in patients in whom vasoconstrictors are contraindicated. Objective: We aimed to evaluate the effects of LEVO in isolated rat superior mesenteric artery by using the vascular reactivity technique and compare its effect to that of lidocaine. Material and method: Arterial rings were obtained from the mesenteric artery of male Wistar rats and kept in organ baths. For recording isometric contractions, each ring was suspended by cotton threads from a force transducer, which was connected to a data acquisition system. Result: Both lidocaine and LEVO did not show a vasoconstrictor effect on the basal tone of the arterial rings with functional endothelium. However, when the rings were pre-contracted with phenylephrine, both drugs were able to induce concentration-dependent vasodilatation. The vasodilator effect induced by LEVO did not change after removal of the endothelium, or with the addition of tetraethylammonium (1 mM), a non-selective K+ channel blocker. In the rings without functional endothelium, which were pre-contracted with depolarizing Tyrode’s solution (KCl 80 mM), LEVO-induced vasodilatation was not significantly different from that observed in the rings pre-contracted with phenylephrine. Moreover, it did not show a significant additional vasodilator effect compared to the maximal vasodilator effect of nifedipine. Conclusion: This study demonstrated that LEVO produces a vasodilator effect in the rat superior mesenteric artery in an endothelium-independent manner. This effect seems to be mediated via Ca2+ channel blockade in the vascular smooth muscle cells.

Keywords

Lidocaine, mesenteric artery, vasodilatation

Resumo

Introdução: Levobupivacaína pode ser uma nova alternativa para analgesia por apresentar baixa toxicidade e vasoconstrição, permitindo sua utilização em pacientes que apresentam contra-indicação no uso de vasoconstritores. Objetivo: Avaliar os efeitos da levobupivacaína utilizando a técnica de reatividade vascular em artéria mesentérica isolada de rato e comparar este efeito à lidocaína. Material e método: Anéis foram obtidos da artéria mesentérica de ratos machos Wistar e foram mantidos em cubas. Para o registro das contrações isométricas, cada anel foi suspenso por linhas de algodão fixadas a um transdutor de força acoplado a um sistema de aquisição. Resultado: Tanto a lidocaína como a levobupivacaína não apresentaram efeito vasocontritor sobre o tônus basal em anéis com endotélio functional. No entanto, quando os anéis foram pré-contraídos com fenilefrina, ambas as drogas induziram um vasorrelaxamento concentração-dependente. O efeito vasorrelaxante causado pela levobupivacaína não foi diferente após a remoção do endotélio, ou com o tetraetilamônio (1mM), um bloqueador não seletivo dos canais para. K+. Em anéis sem endotélio funcional e pré-contraídos com solução despolarizante de Tyrode (KCl 80mM), o vasorelaxamento induzido pela levobupivacaína não foi significativamente diferente daquele observado em anéis pré-contraídos com fenilefrina e não apresentou um efeito adicional significativo sobre o relaxamento máximo da nifedipina. Conclusão: Este estudo demonstrou que a levobupivacaína produz efeito vasorrelaxante em artéria mesentérica de rato, que é endotélio independente. Este efeito parece envolver os bloqueadores de canais para Ca2+ em célula muscular vascular lisa.

Palavras-chave

Lidocaína, artéria mesentérica, vasodilatação

References

1. Carvalho RWF, Pereira CU, Anjos ED, Laureano JR Fo, Vasconcelos BCE. Anestésicos locais: como escolher e prevenir complicações sistêmicas. Rev Port Estomatol Med Dent Cir Maxilofac. 2010 Abr-Jun;51(2):113-20.

2. Vasconcelos RJH, Nogueira RVB, Leal AKR, Oliveira CTV, Bezerra JGB. Alterações sistêmicas decorrentes do uso da lidocaína e prilocaína na prática odontológica. Rev Cir Traumat Buco-Maxilo-Facial. 2002 Jan-Jun;1(2):13-9.

3. Ramacciato JC, Motta RHL, Groppo FC, Volpato MC, Ranali J. Anestésicos locais. Rev Assoc Paul Cir Dent. 2007;61(4):486-7.

4. Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology. 1979 Oct;51(4):285-7. http://dx.doi.org/10.1097/00000542-197910000-00001. PMid:484889.

5. Ohmura S, Kawada M, Ohta T, Yamamoto K, Kobayashi T. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg. 2001 Sep;93(3):743-8. http://dx.doi.org/10.1097/00000539-200109000-00039. PMid:11524350.

6. Fawcett JP, Kennedy JM, Kumar A, Ledger R, Kumara GM, Patel MJ, et al. Comparative efficacy and pharmacokinetics of racemic bupivacaine and S-bupivacaine in third molar surgery. J Pharm Pharm Sci. 2002 May-Aug;5(2):199-204. PMid:12207874.

7. Bajwa SJ, Kaur J. Clinical profile of levobupivacaine in regional anesthesia: a systematic review. J Anaesthesiol Clin Pharmacol. 2013 Oct;29(4):530-9. http://dx.doi.org/10.4103/0970-9185.119172. PMid:24249993.

8. Choi YS, Jeong YS, Ok SH, Shin IW, Lee SH, Park JY, et al. The direct effect of levobupivacaine in isolated rat aorta involves lipoxygenase pathway activation and endothelial nitric oxide release. Anesth Analg. 2010 Feb;110(2):341-9. http://dx.doi.org/10.1213/ANE.0b013e3181c76f52. PMid:19955508.

9. Mukozawa M, Takakura K, Mizogami M. Direct vasocontractile activities of bupivacaine enantiomers on the isolated rat thoracic aorta. Anesthesiol Res Pract. 2010;2010:820186. http://dx.doi.org/10.1155/2010/820186. PMid:20981258.

10. Baik JS, Sohn JT, Ok SH, Kim JG, Sung HJ, Park SS, et al. Levobupivacaine-induced contraction of isolated rat aorta is calcium dependent. Can J Physiol Pharmacol. 2011 Jul;89(7):467-76. http://dx.doi.org/10.1139/y11-046. PMid:21812525.

11. Kiliçaslan A, Duman A, Sahin AS. In vitro vasoactive effects of levobupivacaine and ropivacaine on the isolated human umbilical artery and vein. Balkan Med J. 2011;28(2):164-8.

12. Mukozawa M, Takakura K, Obata Y, Shimo K, Shigemi K. Levobupivacaine induces vasoconstriction via Ca2+ -dependent and -independent mechanisms in isolated rat thoracic aorta. Circulation Control in Medicine. 2013;34:71-7.

13. Barros EG, Marquez IM, Zanetta-Barbosa D. Avaliação comparativa da latência e da duração do cloridrato de levobupivacaína 0, 5 por cento sem e com vasoconstrictor em anestesia terminal infiltrativa. Rev Odontol UNESP. 2006 Abr-Jun;35(2):165-70.

14. Hagiwara S, Mitsui M, Karaki H. Effects of felodipine, nifedipine and verapamil on cytosolic Ca2+ and contraction in vascular smooth muscle. Eur J Pharmacol. 1993 Mar;234(1):1-7. http://dx.doi.org/10.1016/0014-2999(93)90698-H. PMid:7682512.

15. Cook NS. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J Cardiovasc Pharmacol. 1989 Feb;13(2):299-306. http://dx.doi.org/10.1097/00005344-198902000-00019. PMid:2468961.

16. Bouaziz H, Iohom G, Estèbe JP, Campana WM, Myers RR. Effects of levobupivacaine and ropivacaine on rat sciatic nerve blood flow. Br J Anaesth. 2005 Nov;95(5):696-700. http://dx.doi.org/10.1093/bja/aei242. PMid:16183680.

17. Aps C, Reynolds F. An intradermal study of the local anaesthetic and vascular effects of the isomers of bupivacaine. Br J Clin Pharmacol. 1978 Jul;6(1):63-8. http://dx.doi.org/10.1111/j.1365-2125.1978.tb01683.x. PMid:666948.

18. Newton DJ, McLeod GA, Khan F, Belch JJ. The effect of adjuvant epinephrine concentration on the vasoactivity of the local anesthetics bupivacaine and levobupivacaine in human skin. Reg Anesth Pain Med. 2004 Jul-Aug;29(4):307-11. http://dx.doi.org/10.1097/00115550-200407000-00002. PMid:15305248.

19. Ergil J, Akkaya T, Gozaydin O, Gunsoy B, Alicura S, Aladag E, et al. Vasoconstrictive and analgesic efficacy of locally infiltrated levobupivacaine in tonsillectomy patients. Int J Pediatr Otorhinolaryngol. 2012 Oct;76(10):1429-33. http://dx.doi.org/10.1016/j.ijporl.2012.06.016. PMid:22776810.

20. Chang HC, Chen SY, Huang YF, Liu FL, Cherng YG, Wang HW. Effects of levobupivacaine on isolated rat tracheal smooth muscle. J Anesth. 2015 Oct;29(5):809-12. http://dx.doi.org/10.1007/s00540-015-2026-8. PMid:25995060.

21. Iida H, Ohata H, Iida M, Nagase K, Uchida M, Dohi S. The differential effects of stereoisomers of ropivacaine and bupivacaine on cerebral pial arterioles in dogs. Anesth Analg. 2001 Dec;93(6):1552-6. http://dx.doi.org/10.1097/00000539-200112000-00046. PMid:11726442.

22. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov;288(5789):373-6. http://dx.doi.org/10.1038/288373a0. PMid:6253831.

23. Karaki H, Weiss GB. Calcium release in smooth muscle. Life Sci. 1988;42(2):111-22. http://dx.doi.org/10.1016/0024-3205(88)90674-1. PMid:2447464.

24. Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells. J Anesth. 2007;21(2):232-42. http://dx.doi.org/10.1007/s00540-006-0488-4. PMid:17458653.

25. Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008 Apr;44(2):65-81. http://dx.doi.org/10.1540/jsmr.44.65. PMid:18552454.

588019eb7f8c9d0a098b53c9 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections