Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.1087
Revista de Odontologia da UNESP
Original Article

Biological characterization of implant surfaces - in vitro study

Caracterização biológica de superfície de titânio - estudo in vitro

Soares, Priscilla Barbosa Ferreira; Moura, Camilla Christian Gomes; Rocha Júnior, Huberth Alexandre da; Dechichi, Paula; Zanetta-Barbosa, Darceny

Downloads: 0
Views: 1268

Abstract

Objective: Evaluate the biological performance of titanium alloys grade IV under different surface treatments: sandblasting and double etching (Experimental surface 1; Exp1, NEODENT); surface with wettability increase (Experimental surface 2; Exp2, NEODENT) on response of preliminary differentiation and cell maturation. Material and method: Immortalized osteoblast cells were plated on Exp1 and Exp2 titanium discs. The polystyrene plate surface without disc was used as control group (C). Cell viability was assessed by measuring mitochondrial activity (MTT) at 4 and 24 h (n = 5), cell attachment was performed using trypan blue exclusion within 4 hours (n = 5), serum total protein and alkaline phosphatase normalization was performed at 4, 7 and 14 days (n = 5). Data were analyzed using one-way ANOVA and Tukey test. Result: The values of cell viability were: 4h: C– 0.32±0.01A; Exp1– 0.34±0.08A; Exp2– 0.29±0.03A. 24h: C– 0.43±0.02A; Exp1– 0.39±0.01A; Exp2– 0.37±0.03A. The cell adhesion counting was: C– 85±10A; Exp1- 35±5B; Exp2– 20±2B. The amounts of serum total protein were 4d: C– 40±2B; Exp1– 120±10A; Exp2– 130±20A. 7d: C– 38±2B; Exp1– 75±4A; Exp2– 70±6A. 14 d: C– 100±3A; Exp1– 130±5A; Exp2– 137±9A. The values of alkaline phosphatase normalization were: 4d: C– 2.0±0.1C; Exp1– 5.1±0.8B; Exp2– 9.8±2.0A. 7d: C– 1.0±0.01C; Exp1– 5.3±0.5A; Exp2– 3.0±0.3B. 14 d: C– 4.1±0.3A; Exp1– 4.4±0.8A; Exp2– 2.2±0.2B. Different letters related to statistical differences. Conclusion: The surfaces tested exhibit different behavior at dosage of alkaline phosphatase normalization showing that the Exp2 is more associated with induction of cell differentiation process and that Exp1 is more related to the mineralization process.

Keywords

Titanium surface, mitochondrial colorimetric assay, cell cytotoxicity.

Resumo

Objetivo: Avaliar o desempenho biológico de ligas de titânio grau IV submetidos a diferentes tratamentos de superfície – jateamento e duplo ataque ácido (Superfície experimental 1; Exp1, NEODENT) e superfície com aumento na molhabilidade (Superfície experimental 2; Exp2, NEODENT) em resposta preliminar de diferenciação e maturação celular. Material e método: Foram plaqueados osteoblastos imortalizados sobre discos de titânio de Exp1 e Exp2 e como controle o poço da placa de cultura sem disco (C). Empregou-se ensaios de viabilidade celular (MTT) em 4 e 24 horas (n = 5), adesão celular em 4 horas (n = 5), dosagem de proteínas totais e fosfatase alcalina normalizada em 4, 7 e 14 dias (n = 5). Os dados foram analisados por ANOVA em fator único seguido de teste de Tukey. Resultado: Os valores de viabilidade celular foram: 4h: C– 0,32±0,01A; Exp1 – 0,34±0,08A; Exp2– 0,29±0,03A. 24h: C– 0,43±0,02A; Exp1– 0,39±0,01A; Exp2– 0,37±0,03A. A contagem de adesão celular foi: C– 85±10A; Exp1– 35±5B; Exp2– 20±2B. Os valores de proteínas totais foram: 4d: C– 40±2B; Exp1– 120±10A; Exp2– 130±20A. 7d: C– 38±2B; Exp1– 75±4A; Exp2– 70±6A. 14 d: C– 100±3A; Exp1– 130±5A; Exp2– 137±9A. Os valores de fosfatase alcalina normalizada foram: 4d: C– 2,0±0,1C; Exp1– 5,1±0,8B; Exp2– 9,8±2,0A, 7d: C– 1,0±0,01C; Exp1– 5,3±0,5A; Exp2– 3,0±0,3B, 14 d: C– 4,1±0,3A; Exp1– 4,4±0,8A; Exp2– 2,2±0,2B. Letras diferentes representam diferenças estatísticas. Conclusão: As superfícies testadas apresentaram comportamento diferenciado na dosagem de fosfatase alcalina normalizada traduzindo que Exp2 está relacionado com processo de indução de diferenciação celular e Exp1 relacionado com processo de mineralização.

Palavras-chave

Superfície de titânio, ensaio colorimétrico mitocondrial, citotoxidade celular.

References

1. Kanno T, Mitsugi M, Paeng J-Y, Sukegawa S, Furuki Y, Ohwada H, et al. Simultaneous sinus lifting and alveolar distraction of a severely atrophic posterior maxilla for oral rehabilitation with dental implants. Int J Dent. 2012;2012(2012). Article ID 471320. http://dx.doi.org/10.1155/2012/471320.

2. Brånemark PI, Breine U, Adell R, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81-100. http://dx.doi.org/10.3109/02844316909036699. PMid:4924041.

3. Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, et al. Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine. 2011;6:1801-16. PMid:21931478.

4. Herrero-Climent M, Lázaro P, Rios JV, Lluch S, Marqués M, Guillem-Martí J, et al. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies. J Mater Sci Mater Med. 2013 Aug;24(8):2047-55. http://dx.doi.org/10.1007/s10856-013-4935-0. PMid:23625320.

5. Moura CC, Machado JR, Silva MV, Rodrigues DB, Zanetta-Barbosa D, Jimbo R, et al. Evaluation of human polymorphonuclear behavior on textured titanium and calcium-phosphate coated surfaces. Biomed Mater. 2013 June;8(3):035010. http://dx.doi.org/10.1088/1748-6041/8/3/035010. PMid:23598427.

6. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998 Sep-Oct;11(5):391-401. PMid:9922731.

7. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009 Sep;20(Suppl 4):172-84. http://dx.doi.org/10.1111/j.1600-0501.2009.01775.x. PMid:19663964.

8. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003 Aug;67(8):932-49. PMid:12959168.

9. Xiao J, Zhou H, Zhao L, Sun Y, Guan S, Liu B, et al. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep. Osteoporos Int. 2011 June;22(6):1907-13. http://dx.doi.org/10.1007/s00198-010-1413-0. PMid:20878388.

10. Canabarro A, Paiva CG, Ferreira HT, Tholt-de-Vasconcellos B, De-Deus G, Prioli R, et al. Short-term response of human osteoblast-like cells on titanium surfaces with micro- and nano-sized features. Scanning. 2012 Nov-Dec;34(6):378-86. http://dx.doi.org/10.1002/sca.21020. PMid:22753315.

11. Sader MS, Balduino A, Soares GA, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res. 2005 Dec;16(6):667-75. http://dx.doi.org/10.1111/j.1600-0501.2005.01135.x. PMid:16307573.

12. Kubies D, Himmlová L, Riedel T, Chánová E, Balík K, Douděrová M, et al. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol Res. 2011;60(1):95-111. PMid:20945966.

13. Degidi M, Artese L, Piattelli A, Scarano A, Shibli JA, Piccirilli M, et al. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments: a prospective randomised study. Clin Oral Investig. 2012 June;16(3):857-66. http://dx.doi.org/10.1007/s00784-011-0574-3. PMid:21655909.

14. Coelho PG, Cardaropoli G, Suzuki M, Lemons JE. Histomorphometric evaluation of a nanothickness bioceramic deposition on endosseous implants: a study in dogs. Clin Implant Dent Relat Res. 2009 Dec;11(4):292-302. http://dx.doi.org/10.1111/j.1708-8208.2008.00122.x. PMid:18783412.

15. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007 Jan;28(2):354-69. http://dx.doi.org/10.1016/j.biomaterials.2006.08.049. PMid:21898921.

16. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):579-96. http://dx.doi.org/10.1002/jbm.b.31264. PMid:18973274.

17. Xavier SP, Carvalho PSP, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003 Mar;31(3):173-80. http://dx.doi.org/10.1016/S0300-5712(03)00027-7. PMid:12726701.

18. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res. 2001 Oct;12(5):515-525. PMid: 11564113.

19. Zhang F, Zhang CF, Yin MN, Ren LF, Lin HS, Shi GS. Effect of heat treatment on H2O2/HCl etched pure titanium dental implant: an in vitro study. Med Sci Monit. 2012 July;18(7):BR265-72. http://dx.doi.org/10.12659/MSM.883204. PMid:22739726.

20. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996 Jan;17(2):137-46. http://dx.doi.org/10.1016/0142-9612(96)85758-9. PMid:8624390.

21. Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, et al. Implant surface roughness affects osteoblast gene expression. J Dent Res. 2003 May;82(5):372-6. http://dx.doi.org/10.1177/154405910308200509. PMid:12709504.

22. Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005 May;26(14):1837-47. http://dx.doi.org/10.1016/j.biomaterials.2004.06.035. PMid:15576158.

23. Beck GR Jr, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A. 2000 July;97(15):8352-57. PMCID: PMC26951.

24. Piattelli A, Scarano A, Corigliano M, Piattelli M. Effects of alkaline phosphatase on bone healing around plasma-sprayed titanium implants: a pilot study in rabbits. Biomaterials. 1996 July;17(14):1443-9. http://dx.doi.org/10.1016/0142-9612(96)87288-7. PMid:8830973.

588019d67f8c9d0a098b5374 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections