Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.1082
Revista de Odontologia da UNESP
Original Article

Incorporação do hormônio do crescimento humano recombinante (rhGH) em matriz de polímero biodegradável

Recombinant human growth hormone (rhGH) incorporated into biodegradable polymer scaffolds

Garcia, Ricardo Fernandes; Duarte, Aline Adelaide Paz da Silva; Boing, Fernanda; Ligabue, Rosane Angélica; Pagnoncelli, Rogério Miranda

Downloads: 0
Views: 1129

Resumo

Objetivo: Incorporar o hormônio de crescimento recombinante humano em um polímero biodegradável (PLGA). Material e método: As matrizes foram confeccionadas através da técnica de evaporação de solventes. Foi feita uma mistura do polímero (poli ácido glicólico lático) e do hormônio do crescimento humano recombinante (Saizen® Merck Serono S.A. Aubonne, Suíça). Essa mistura foi vertida em moldes de silicone circulares de 1 cm de diâmetro e aproximadamente 2 mm de espessura, e levada para secagem em uma câmara de evaporação de solvente por 48 horas. Após esse período, as matrizes foram imersas em PBS e passaram por um banho termostatizado (ensaio de degradação hidrolítica), in vitro, à temperatura de 37°C. As amostras foram retiradas do banho no intervalo de 1, 2, 3, 4, 7, 10 e 14 dias. Foram aferidas a perda de massa, a variação do pH e a concentração do hormônio liberado em função do tempo. Resultado: A concentração do hormônio liberado em função do tempo foi aumentando até o terceiro dia. No quarto dia, houve uma queda e, no sétimo, ocorreu um aumento do hormônio liberado, estendendo-se até o décimo dia; no 14° dia, houve queda novamente. O pH teve uma queda brusca de 7,4 para 3,2 no primeiro dia, mantendo uma pequena queda até o 14° dia. A perda de massa foi gradual em relação ao tempo, como já era esperado. Conclusão: O PLGA é um bom biomaterial para confecção de matrizes com hormônio do crescimento. Revelou-se possível incorporar o rhGH nessa matriz, de modo a, então, desenvolver-se um substituto ósseo.

Palavras-chave

Polímeros, hormônio do crescimento, biodegradação.

Abstract

Objective: Incorporate recombinant human growth hormone in a biodegradable polymer (PLGA). Material and method: The arrays were fabricated by solvent evaporation technique. A mixture of polymer (poly lactic glycolic acid) and recombinant human growth (Saizen® Merck Serono SA Aubonne, Switzerland) was performed hormone. This mixture was poured into circular molds silicone 01cm in diameter and about 02mm thick, and carried into a drying chamber for evaporation of solvent for 48 hours. After this period, the matrices were immersed in PBS and passed through a constant temperature bath (test for hydrolytic degradation) in vitro, at a temperature of 37°C. The samples were removed from the bath in the range of 01, 02, 03, 04, 07, 10, 14 days. Mass loss, pH and concentration of hormone released as a function of time was measured. Result: The concentration of hormone released versus time was increased until the third day. On the fourth day had a fall and on the seventh day there have been increased hormone released by the tenth day, the fourteenth day was falling again. The pH had a sharp drop from 7.4 to 3.2 on the first day and keeping a small drop until the fourteenth day. The mass loss was a gradual loss in relation to time as was to be expected. Conclusion: PLGA is a good biomaterial for making breeders of growth hormone. It has proved possible to incorporate the rhGH in the array so as to then develop a bone substitute.

Keywords

Polymers, growth hormone, biodegradation.

References

1. Soares AQ, Oliveira LF, Rabelo D, Souza AR. Polímeros biodegradáveis: novas perspectivas para ciências farmacêuticas. Revista Eletrônica de Farmácia. 2005;2(2 Supl):202-5.

2. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008 Jul;97(7):2395-404. http://dx.doi.org/10.1002/jps.21176. PMid:17828756.

3. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000 Jul;50(1):147-60. http://dx.doi.org/10.1016/S0939-6411(00)00084-9. PMid:10840198.

4. Li X, Zhang Y, Yan R, Jia W, Yuan M, Deng X, et al. Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres. J Control Release. 2000 Jul;68(1):41-52. http://dx.doi.org/10.1016/S0168-3659(00)00235-2. PMid:10884578.

5. Ohlsson C, Bengtsson B-Å, Isaksson OG, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev. 1998 Fev;19(1):55-79. PMid:9494780.

6. Zhao L, He C, Gao Y, Cen L, Cui L, Cao Y. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. J Biomed Mater Res B Appl Biomater. 2008 Out;87(1):26-34. http://dx.doi.org/10.1002/jbm.b.31060. PMid:18384158.

7. Calvo-Guirado JL, Mate-Sanchez J, Delgado-Ruiz R, Ramirez-Fernández MP, Cutando-Soriano A, Peña M. Effects of growth hormone on initial bone formation around dental implants: a dog study. Clin Oral Implants Res. 2011 Jun;22(6):587-93. http://dx.doi.org/10.1111/j.1600-0501.2010.02007.x. PMid:21121954.

8. Gómez-Moreno G, Cutando A, Arana C, Worf CV, Guardia J, Muñoz F, et al. The effects of growth hormone on the initial bone formation around implants. Int J Oral Maxillofac Implants. 2009 Nov-Dez;24(6):1068-73. PMid:20162111.

9. Jahno VD, Ribeiro GB, Santos LA, Ligabue R, Einloft S, Ferreira MR, et al. Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid). J Biomed Mater Res A. 2007 Out;83(1):209-15. http://dx.doi.org/10.1002/jbm.a.31210. PMid:17437300.

10. Somatropina humana recombinante 4 UI. Saizen (pó liófilo injetável). Responsável técnico: AJG Guimarães. Buenos Aires: Bio Sidus; 2009. Bula de remédio: N1281212B.

11. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011 Set;3(3):1377-97.

12. Zhao J, Han W, Chen H, Tu M, Zeng R, Shi Y, et al. Preparation, structure and crystallinity of chitosan nano-fibers by a solid–liquid phase separation technique. Carbohydr Polym. 2011 Fev;83(4):1541-6. http://dx.doi.org/10.1016/j.carbpol.2010.10.009.

13. American Society for Testing and Materials – ASTM. Standard test method for in vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. Philadelphia: Standards Worldwide; 2010.

14. Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, et al. Development of a sustained-release recombinant human growth hormone formulation. J Control Release. 2009 Jul;137(2):160-5. http://dx.doi.org/10.1016/j.jconrel.2009.03.014. PMid:19332090.

15. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002 Jun;60(4):613-21. http://dx.doi.org/10.1002/jbm.10167. PMid:11948520.

16. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells. 2006 Fev;24(2):426-33. http://dx.doi.org/10.1634/stemcells.2005-0170. PMid:16150921.

17. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003 Nov;67(2):531-7. http://dx.doi.org/10.1002/jbm.a.10098. PMid:14566795.

18. Raschke M, Rasmussen MH, Govender S, Segal D, Suntum M, Christiansen JS. Effects of growth hormone in patients with tibial fracture: a randomised, double-blind, placebo-controlled clinical trial. Eur J Endocrinol. 2007 Mar;156(3):341-51. http://dx.doi.org/10.1530/EJE-06-0598. PMid:17322494.

19. Tresguerres IF, Blanco L, Clemente C, Tresguerres JA. Effects of local administration of growth hormone in peri-implant bone: an experimental study with implants in rabbit tibiae. Int J Oral Maxillofac Implants. 2003 Nov-Dez;18(6):807-11. PMid:14696655.

20. Fallucco MA, Carstens MH. Primary reconstruction of alveolar clefts using recombinant human bone morphogenic protein-2: clinical and radiographic outcomes. J Craniofac Surg. 2009 Set;20(Supl 2):1759-64. http://dx.doi.org/10.1097/SCS.0b013e3181b5d08e. PMid:19816345.

21. Jung RE, Windisch SI, Eggenschwiler AM, Thoma DS, Weber FE, Hämmerle CHF. A randomized controlled critical trial evaluating clinical radiological outcomes after 3 and 5 years of dental placed in bone regenered by means of GBR techniques with or without the of BMP-2. Clin Oral Implants Res. 2009 Mar; 20(7):660-6. http://dx.doi.org/10.1111/j.1600-0501.2008.01648.x. PMid:19489935.

22. Dickinson BP, Ashley RK, Wasson KL, O’Hara C, Gabbay J, Heller JB, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg. 2008 Jan;121(1):209-17. http://dx.doi.org/10.1097/01.prs.0000293870.64781.12. PMid:18176223.

23. Cho BC, Kim JY, Lee JH, Chung HY, Park JW, Roh KH, et al. The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg. 2004 Mar;15(2):299-311, discussion 312-3. http://dx.doi.org/10.1097/00001665-200403000-00028. PMid:15167253.

588019d77f8c9d0a098b5378 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections