Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.08815
Revista de Odontologia da UNESP
Original Article

The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

As mudanças químicas e de dureza na dentina decidua desmineralizada tratada com fluoreto e cimento de ionômero de vidro

Dias, Gisele Fernandes; Chibinski, Ana Cláudia Rodrigues; Santos, Fábio André dos; Hass, Viviane; Alves, Fabiana Bucholdz Teixeira; Wambier, Denise Stadler

Downloads: 0
Views: 990

Abstract

Background: Fluoride plays an important role in the control of dental caries. Aim: To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC) and primary dentin with application of sodium fluoride (NaF) 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method: Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20) according to dentin condition: sound (1) and demineralized (2). Sub-groups (n=10) were formed to investigate the isolated action of the GIC or the association with NaF (F). This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling), to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05) was used for statistical analysis. Micro-Raman data were qualitatively described. Result: Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p<0.001); no difference was observed in microhardness after application of NaF (p>0.05). In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion. The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate) occurs without the influence of NaF.

Keywords

Glass ionomer cements, dentin, atraumatic restorative treatment, tooth decay, fluoride.

Resumo

Introdução: O fluoreto desempenha importante papel no controle da cárie dental. Objetivo: Avaliar as trocas químicas entre cimentos de ionômero de vidro de alta viscosidade (CIV) e dentina decídua com aplicação de fluoreto de sódio (NaF) a 2% em alterações de dureza dentinária a partir da incorporação de cálcio, fosfato e fluoreto. Material e método: Cavidades Classe I foram preparadas em 40 molares hígidos divididos em 2 grupos (n=20), de acordo com a condição dentinária: hígida (1) e desmineralizada (2). Subgrupos (n=10) foram formados para avaliar a ação isolada do CIV ou associado com NaF (F). Este estudo in vitro avaliou as trocas químicas sob duas condições: dentina hígida e desmineralizada (ciclagem de pH) para simular a perda mineral que ocorre em lesões de cárie. Grupo G1 e G2 receberam restaurações de CIV; Grupos G1F e G2F receberam NaF antes do CIV. Os espécimes foram preparados para microdureza Knoop e Micro-Raman. Para análise estatística foi utilizada Anova 2 fatores (α = 0.05). Os dados do Micro-Raman foram descritos qualitativamente. Resultado: O aumento de dureza foi observado em todos os sítios de contato direto com CIV, em ambas dentinas em todos os grupos (p<0.001); não foi observado diferença em microdureza após aplicação do NaF (p>0.05). Na avaliação do Micro-Raman, o contato direto do CIV/dentina tanto hígida quanto desmineralizada resultou em um aumento do pico do fosfato dentinário. Conclusão: As trocas químicas entre o CIV e dentina desmineralizada podem induzir mudanças das propriedades mecânicas do substrato e a captação de íons minerais (fosfato) ocorre sem a influência do NaF.

Palavras-chave

Cimentos de ionômero de vidro, dentina, tratamento restaurador atraumático, cárie dentária, fluoreto.

References

1. Massara MLA, Alves JB, Brandão PRG. Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res. 2002 Nov-Dec;36(6):430-6. http://dx.doi.org/10.1159/000066534. PMid:12459616.

2. Wambier DS, Santos FA, Guedes-Pinto AC, Jaeger RG, Simionato MR. Ultrastructural and microbiological analysis of the dentin layers affected by caries lesions in primary molars treated by minimal intervention. Pediatr Dent. 2007 May-Jun;29(3):228-34. PMid:17688020.

3. Chibinski AC, Reis A, Kreich EM, Tanaka JL, Wambier DS. Evaluation of primary carious dentin after cavity sealing in deep lesions: a 10 to 13-month follow-up. Pediatr Dent. 2013 May-Jun;35(3):E107-12. PMid:23756304.

4. Marchi JJ, Froner AM, Alves HL, Bergmann CP, Araújo FB. Analysis of primary tooth dentin after indirect pulp capping. J Dent Child (Chic). 2008 Sep-Dec;75(3):295-300. PMid:19040817.

5. Casagrande L, Falster CA, Di Hipolito V, De Góes MF, Straffon LH, Nör JE, et al. Effect of adhesive restorations over incomplete dentin caries removal: 5-year follow-up study in primary teeth. J Dent Child (Chic). 2009 May-Aug;76(2):117-22. PMid:19619424.

6. Lula EC, Almeida LJ Jr, Alves CM, Monteiro-Neto V, Ribeiro CC. Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res. 2011;45(3):275-80. http://dx.doi.org/10.1159/000325854. PMid:21576960.

7. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014 Jan;30(1):50-61. http://dx.doi.org/10.1016/j.dental.2013.08.202. PMid:24113131.

8. Lippert F, Hara AT, Martinez-Mier EA, Zero DT. In vitro caries lesion rehardening and enamel fluoride uptake from fluoride varnishes as a function of application mode. Am J Dent. 2013 Apr;26(2):81-5. PMid:24073530.

9. Lynch RJ, Navada R, Walia R. Low-levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int Dent J. 2004;54(5 Suppl 1):304-9. http://dx.doi.org/10.1111/j.1875-595X.2004.tb00003.x. PMid:15509081.

10. Ngo HC, Mount G, McIntyre J, Do L. An in vitro model for the study of chemical exchange between glass ionomer restorations and partially demineralized dentin using a minimally invasive restorative technique. J Dent. 2011 Dec;39(Suppl 2):S20-6. http://dx.doi.org/10.1016/j.jdent.2011.10.016. PMid:22101125.

11. ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982;16(3):201-10. http://dx.doi.org/10.1159/000260599. PMid:6953998.

12. Marquezan M, Corrêa FN, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol. 2009 Dec;54(12):1111-7. http://dx.doi.org/10.1016/j.archoralbio.2009.09.007. PMid:19878926.

13. Nicholson JW. Glass ionomer dental cements: update. Materials Techonology. 2010 Mar;25(1):8-13. http://dx.doi.org/10.1179/175355509X12614966220506.

14. Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J. 2011 Jun;56(Suppl 1):23-30. http://dx.doi.org/10.1111/j.1834-7819.2010.01293.x. PMid:21564113.

15. Baliga MS, Bhat SS. Effect of fluorides from various restorative materials on remineralization of adjacent tooth: an in vitro study. J Indian Soc Pedod Prev Dent. 2010 Apr-Jun;28(2):84-90. http://dx.doi.org/10.4103/0970-4388.66742. PMid:20660973.

16. Bezerra AC, Novaes RC, Faber J, Frencken JE, Leal SC. Ion concentration adjacent to glass-ionomer restorations in primary molars. Dent Mater. 2012 Nov;28(11):e259-63. http://dx.doi.org/10.1016/j.dental.2012.08.014. PMid:22999372.

17. Arnaud TM, de Barros Neto B, Diniz FB. Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent. 2010 Nov;38(11):848-52. http://dx.doi.org/10.1016/j.jdent.2010.06.004. PMid:20600551.

18. Angker L, Nockolds C, Swain MV, Kilpatrick N. Correlating the mechanical properties to the mineral content of carious dentine--a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch Oral Biol. 2004 May;49(5):369-78. http://dx.doi.org/10.1016/j.archoralbio.2003.12.005. PMid:15041484.

19. Banerjee A, Paolinelis G, Socker M, McDonald F, Watson TF. An in vitro investigation of the effectiveness of bioactive glass air-abrasion in the ‘selective’ removal of orthodontic resin adhesive. Eur J Oral Sci. 2008 Oct;116(5):488-92. http://dx.doi.org/10.1111/j.1600-0722.2008.00561.x. PMid:18821993.

20. Sauro S, Thompson I, Watson TF. Effects of common dental materials used in preventive or operative dentistry on dentin permeability andremineralization. Oper Dent. 2011 Mar-Apr;36(2):222-30. http://dx.doi.org/10.2341/10-225-L. PMid:21777102.

21. Ngo HC, Mount G, Mc Intyre J, Tuisuva J, Von Doussa RJ. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006 Sep;34(8):608-13. http://dx.doi.org/10.1016/j.jdent.2005.12.012. PMid:16540227.

22. Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res. 2010 Mar;89(3):230-5. http://dx.doi.org/10.1177/0022034509357172. PMid:20110510.

23. Chowdary MV, Kumar KK, Thakur K, Anand A, Kurien J, Krishna CM, et al. Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy. Photomed Laser Surg. 2007 Aug;25(4):269-74. http://dx.doi.org/10.1089/pho.2006.2066. PMid:17803383.

24. Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, et al. Microbiochemical analysis of carious dentine using Raman and fluorescence spectroscopy. Caries Res. 2012;46(5):432-40. http://dx.doi.org/10.1159/000339487. PMid:22739587.

25. Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A. 2007 May;81(2):279-86. http://dx.doi.org/10.1002/jbm.a.30981. PMid:17120213.

588019df7f8c9d0a098b5397 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections