Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.08216
Revista de Odontologia da UNESP
Original Article

Analysis of resistance to fatigue between straight solid and anatomic abutments of Morse taper system

Análise da resistência à fadiga entre pilares retos e anatômicos do sistema cone Morse

Gois-Santos, Vanessa Tavares de; Trento, Cleverson Luciano; Santos, Silvando Vieira dos; Santos, Renan Celestino Silva; Santos, Victor Santana; Griza, Sandro

Downloads: 1
Views: 1063

Abstract

Background: The study of the phenomenon of fatigue is essential because implant failures usually are caused by this process. Purpose: The objective of this study was to examine the fatigue resistance of straight and anatomical abutments joints that were submitted to cyclic loads. Material and method: We used 37 Morse taper implants and 37 abutments, divided into two groups (n= 16: straight abutment, n= 21 anatomical abutment). The sets were submitted to cyclic loading (5 million) using servo-hydraulic equipment. Three sets from each group were subjected to bending tests to determine the maximum load resistance, which served as the parameter for comparison of the cyclic tests. We evaluated number of cycles, load and bending moment. Result: Of the 31 abutments cyclically tested, 17 (54.8%) fractured in fewer than 5 million cycles; 8 (25.8%) of these were straight abutments, and 9 (29%) were anatomical. A total of 14 samples (45.2%) resisted the cyclic loading. According to Fisher's exact test, there was no difference between groups as the fracture. Conclusion: Despite of the straight abutments have higher average load and bending moment on the anatomical, both types of abutments showed similar performance as the fracture strength in vitro.

Keywords

Dental implants, material resistance, mechanical phenomena.

Resumo

Contexto: O estudo do fenômeno de fadiga é essencial porque as falhas de implantes geralmente são causadas por este processo. Objetivo: O objetivo deste estudo foi analisar a resistência à fadiga de conjuntos de pilares retos e anatômicos que foram submetidos a cargas cíclicas. Material e método: Foram utilizados 37 implantes cone Morse e 37 pilares, divididos em dois grupos (n = 16: pilares retos, n = 21: pilares anatômicos). Os conjuntos foram submetidos à carga cíclica (5.000.000) usando o equipamento servo-hidráulico. Três conjuntos de cada grupo foram submetidos a testes de flexão para determinar a resistência de carga máxima, o que serviu de parâmetro para comparação dos testes cíclicos. Foram avaliados número de ciclos, carga e momento de flexão. Resultado: Dos 31 pilares ciclicamente testados, 17 (54,8%) fraturaram em menos de 5 milhões de ciclos; 8 (25,8%) destes eram pilares retos, e 9 (29%) eram anatômicos. Um total de 14 amostras (45,2%) resistiu à carga cíclica. De acordo com o teste exato de Fisher, não houve diferença entre os grupos quanto à fratura. Conclusão: Apesar dos pilares retos terem maior carga média e momento de flexão que os anatômicos, os dois tipos de pilares apresentaram desempenho semelhante quanto a resistência à fratura in vitro.

Palavras-chave

Implantes dentários, resistência de materiais, fenômenos mecânicos.

References

1. Haas R, Polak C, Fürhauser R, Mailath-Pokorny G, Dörtbudak O, Watzek G. A long-term follow-up of 76 Bränemark single-tooth implants. Clin Oral Implants Res. 2002 Feb;13(1):38-43. http://dx.doi.org/10.1034/j.1600-0501.2002.130104.x. PMid:12005143.

2. Kronström M, Svenson B, Hellman M, Persson GR. Early implant failures in patients treated with Brånemark System titanium dental implants: a retrospective study. Int J Oral Maxillofac Implants. 2001 Mar-Apr;16(2):201-7. PMid:11324208.

3. Wagenberg B, Froum SJ. Prospective study of 94 platform-switched implants observed from 1992 to 2006. Int J Periodontics Restorative Dent. 2010 Feb;30(1):9-17. PMid:20224827.

4. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol. 2000 Apr;71(4):546-9. http://dx.doi.org/10.1902/jop.2000.71.4.546. PMid:10807116.

5. Cumbo C, Marigo L, Somma F, La Torre G, Minciacchi I, D’Addona A. Implant platform switching concept: a literature review. Eur Rev Med Pharmacol Sci. 2013 Feb;17(3):392-7. PMid:23426544.

6. Bozkaya D, Müftü S. Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants. J Biomech. 2005 Jan;38(1):87-97. http://dx.doi.org/10.1016/j.jbiomech.2004.03.006. PMid:15519343.

7. Moris IC, Faria AC, de Mattos MG, Ribeiro RF, Rodrigues RC. Mechanical analysis of conventional and small diameter conical implant abutments. J Adv Prosthodont. 2012 Aug;4(3):158-61. http://dx.doi.org/10.4047/jap.2012.4.3.158. PMid:22977724.

8. Dias RP, Padovan LEM, Hamata MM. Conexões implante-abutment. Salusvita. 2009;28(3):277-88.

9. DeVries PH, Ruth KT, Dennies DP. Counting on fatigue: striations and their measure. J Fail Anal Prev. 2010 Apr;10(2):120-37. http://dx.doi.org/10.1007/s11668-009-9320-4.

10. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants. 1994 Jan-Feb;9(1):90-4. PMid:8150518.

11. International Organization for Standardization – ISO. ISO 14801:2007: dentistry: implants: dynamic fatigue test for endosseous dental implants. Geneva: ISO; 2007.

12. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent. 2001 Mar;85(3):268-75. http://dx.doi.org/10.1067/mpr.2001.114266. PMid:11264934.

13. Quek HC, Tan KB, Nicholls JI. Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system. IInt J Oral Maxillofac Implants. 2008 Mar-Apr;23(2):253-62. PMid:18548921.

14. Dittmer MP, Dittmer S, Borchers L, Kohorst P, Stiesch M. Influence of the interface design on the yield force of the implant-abutment complex before and after cyclic mechanical loading. J Prosthodont Res. 2012 Jan;56(1):19-24. http://dx.doi.org/10.1016/j.jpor.2011.02.002. PMid:21398198.

15. Pedroza JE, Torrealba Y, Elias A, Psoter W. Comparison of the compressive strength of 3 different implant design systems. J Oral Implantol. 2007;33(1):1-7. http://dx.doi.org/10.1563/0-809.1. PMid:17410905.

16. Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int. 2006 Jan;37(1):19-26. PMid:16429699.

17. Griza S, de Andrade CEC, Batista WW, Tentardini EK, Strohaecker TR. Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects. Eng Fail Anal. 2012 Oct;25:133-43. http://dx.doi.org/10.1016/j.engfailanal.2012.05.009.

18. Coppedê AR, Bersani E, Mattos MGC, Rodrigues RCS, Sartori IA, Ribeiro RF. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study. Int J Prosthodont. 2009;22(3):283-6. PMid:19548411.

19. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Döring H, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A. 2014 Feb;102(2):552-74. http://dx.doi.org/10.1002/jbm.a.34709. PMid:23533139.

20. Rangert B, Jemt T, Jörneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants. 1989;4(3):241-7. PMid:2700747.

21. Ribeiro CG, Maia ML, Scherrer SS, Cardoso AC, Wiskott HW. Resistance of three implant-abutment interfaces to fatigue testing. J Appl Oral Sci. 2011 Aug;19(4):413-20. http://dx.doi.org/10.1590/S1678-77572011005000018. PMid:21710094.

22. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent. 2002 Dec;88(6):604-10. http://dx.doi.org/10.1067/mpr.2002.129384. PMid:12488853.

23. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res. 2000 Oct;11(5):458-64. http://dx.doi.org/10.1034/j.1600-0501.2000.011005458.x. PMid:11168238.

24. Sailer I, Philipp A, Zembic A, Pjetursson BE, Hämmerle CH, Zwahlen M. A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2009 Sep;20(Suppl 4):4-31. http://dx.doi.org/10.1111/j.1600-0501.2009.01787.x. PMid:19663946.

25. Haraldson T, Carlsson GE, Ingervall B. Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol Scand. 1979;37(4):195-206. http://dx.doi.org/10.3109/00016357909027582. PMid:291276.

588019e97f8c9d0a098b53c4 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections