Revista de Odontologia da UNESP
http://revodontolunesp.com.br/article/doi/10.1590/1807-2577.06718
Revista de Odontologia da UNESP
Original Article

Influence of cantilever position and implant connection in a zirconia custom implant-supported fixed partial prosthesis: in silico analysis

Influência da posição do cantilever e da conexão do implante em um modelo de zirconia de uma prótese parcial fixa implanto-suportada: análise in sílico

Juliana Maria Coutinho BASTOS; Dimorvan BORDIN; Andréa Araújo de VASCONCELLOS; Milton Edson MIRANDA

Abstract

Abstract: Introduction: A better tension distribution on implants and abutments in implant-supported fixed partial prosthesis is essential in the rehabilitation of posterior mandible area. Objective: To evaluate the influence of cantilever position and implant connection in a zircônia custom implant-supported fixed partial prosthesis using the 3-D finite element method. Material and method: Four models were made based on tomographic slices of the posterior mandible with a zirconia custom three-fixed screw-retained partial prosthesis. The investigated factors of the in silico study were: cantilever position (mesial or distal) and implant connection (external hexagon or morse taper). 100 N vertical load to premolar and 300 N to molar were used to simulate the occlusal force in each model to evaluate the distribution of stresses in implants, abutments, screws and cortical and cancellous bone. Result: The external hexagon (EH) connection showed higher cortical compression stress when compared to the morse taper (MT). For both connections, the molar cantilever position had the highest cortical compression. The maximum stress peak concentration was located at the cervical bone in contact with the threads of the first implant. The prosthetic and abutment screws associated with the molar cantilevers showed the highest stress concentration, especially with the EH connection. Conclusion: Morse taper implant connetions associated with a mesial cantilever showed a more favorable treatment option for posterior mandible rehabilitation.

Keywords

Dental implant-abutment design, finite element analysis, zirconia

Resumo

Resumo: Introdução: Uma melhor distribuição de tensão em implantes e mini-pilares em próteses parciais fixas implanto-suportadas é essencial na reabilitação em região posterior de mandíbula. Objetivo: Avaliar a influência da posição do cantilever e conexão do implante em uma prótese fixa de três elementos confeccionada totalmente em zircônia através do método de elementos finitos tridimensionais (MEF). Material e método: Foram confeccionados quatro modelos baseados em cortes tomográficos da região posterior da mandíbula com uma prótese parcial parafusada fixada em três fixações personalizadas de zircônia. Os fatores investigados do estudo in sílico foram: posição do cantilever (mesial ou distal) e conexão do implante (hexágono externo ou cone morse). Uma carga de 100 N para a região de pré-molares e de 300 N para a região de molares foi usada para simular a força oclusal em cada modelo para avaliação da distribuição de tensões nos implantes, mini pilares, parafusos e tecido ósseo cortical e medular. Resultado: A conexão hexágono externo apresentou maior concentração de tensão no osso cortical quando comparado ao cone morse. Para ambas conexões, o cantilever distal aumentou a tensão no osso cortical. O pico máximo de tensão foi localizado no osso cervical em contato com as primeiras roscas internas do primeiro implante. Os parafusos protéticos e dos mini-pilares associados ao cantilever distal apresentaram maior concentração de tensão, especialmente na conexão hexágono externo. Conclusão: Conexão do implante cone morse associada ao cantilever mesial apresentou uma opção de tratamento mais favorável para a reabilitação na região posterior de mandíbula.
 

Palavras-chave

Projeto do implante dentário-pivô, análise de elementos finitos, zircônio

References

Greenstein G, Cavallaro J Jr. Cantilevers extending from unilateral implant-supported fixed prostheses: a review of the literature and presentation of practical guidelines. J Am Dent Assoc. 2010 Oct;141(10):1221-30. http://dx.doi.org/10.14219/jada.archive.2010.0049. PMid:20884924.

Gonda T, Yasuda D, Ikebe K, Maeda Y. Biomechanical factors associated with mandibular cantilevers: analysis with three-dimensional finite element models. Int J Oral Maxillofac Implants. 2014 Nov-Dec;29(6):e275-82. http://dx.doi.org/10.11607/jomi.3663. PMid:25397809.

Borie E, Orsi IA, de Araujo CP. The influence of the connection, length and diameter of an implant on bone biomechanics. Acta Odontol Scand. 2015 Jul;73(5):321-9. http://dx.doi.org/10.3109/00016357.2014.961957. PMid:25598357.

Sanivarapu S, Moogla S, Kuntcham RS, Kolaparthy LK. Implant fractures: rare but not exceptional. J Indian Soc Periodontol. 2016 Jan-Feb;20(1):6-11. http://dx.doi.org/10.4103/0972-124X.154190. PMid:27041830.

Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res. 2004 Aug;15(4):401-12. http://dx.doi.org/10.1111/j.1600-0501.2004.01022.x. PMid:15248874.

Abreu E, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Terns RM, et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol. 2010 Jun;30(12):2971-82. http://dx.doi.org/10.1128/MCB.00240-10. PMid:20404094.

Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res. 2006 Oct;17(S2 Suppl 2):8-18. http://dx.doi.org/10.1111/j.1600-0501.2006.01360.x. PMid:16968378.

Greco GD, Jansen WC, Landre J Jr, Seraidarian PI. Stress analysis on the free-end distal extension of an implant-supported mandibular complete denture. Braz Oral Res. 2009 Apr-Jun;23(2):182-9. http://dx.doi.org/10.1590/S1806-83242009000200014. PMid:19684954.

Hälg GA, Schmid J, Hämmerle CH. Bone level changes at implants supporting crowns or fixed partial dentures with or without cantilevers. Clin Oral Implants Res. 2008 Oct;19(10):983-90. http://dx.doi.org/10.1111/j.1600-0501.2008.01556.x. PMid:18828813.

Michalakis KX, Calvani P, Hirayama H. Biomechanical considerations on tooth-implant supported fixed partial dentures. J Dent Biomech. 2012;3(0):1-16. http://dx.doi.org/10.1177/1758736012462025. PMid:23255882.

Gupta S, Gupta H, Tandan A. Technical complications of implant-causes and management: a comprehensive review. Natl J Maxillofac Surg. 2015 Jan-Jun;6(1):3-8. http://dx.doi.org/10.4103/0975-5950.168233. PMid:26668445.

Romanos GE, Gupta B, Eckert SE. Distal cantilevers and implant dentistry. Int J Oral Maxillofac Implants. 2012 Sep-Oct;27(5):1131-6. PMid:23057026.

Chen Y-Y, Kuan C-L, Wang Y-B. Implant occlusion: biomechanical considerations for implant-supported prostheses. J Dent Sci. 2008 Jun;3(2):65-74.

Goiato MC, Pellizzer EP, Silva EV, Bonatto LR, Santos DM. Is the internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? A systematic review. Oral Maxillofac Surg. 2015 Sep;19(3):229-42. http://dx.doi.org/10.1007/s10006-015-0494-5. PMid:25910993.

Krishnan V, Tony Thomas C, Sabu I. Management of Abutment screw loosening: review of literature and report of a case. J Indian Prosthodont Soc. 2014 Sep;14(3):208-14. http://dx.doi.org/10.1007/s13191-013-0330-2. PMid:25183903.

Peruzetto WM, Martinez EF, Peruzzo DC, Joly JC, Napimoga MH. Microbiological seal of two types of tapered implant connections. Braz Dent J. 2016 May-Jun;27(3):273-7. http://dx.doi.org/10.1590/0103-6440201600604. PMid:27224559.

Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil. 2006 Jan;33(1):75-8. http://dx.doi.org/10.1111/j.1365-2842.2006.01545.x. PMid:16409521.

Feitosa PC, Lima AP, Silva-Concílio LR, Brandt WC, Neves AC. Stability of external and internal implant connections after a fatigue test. Eur J Dent. 2013 Jul;7(3):267-71. http://dx.doi.org/10.4103/1305-7456.115407. PMid:24926204.

Gehrke S, Delgado-Ruiz R, Frutos J, Prados-Privado M, Dedavid B, Marín J, et al. Misfit of three different implant abutment connections before and after cyclic load application: an in vitro study. Int J Oral Maxillofac Implants. 2017 Jul/Aug;32(4):822-9. http://dx.doi.org/10.11607/jomi.5629. PMid:28708914.

Mangano C, Mangano F, Shibli JA, Ricci M, Sammons RL, Figliuzzi M. Morse taper connection implants supporting “planned” maxillary and mandibular bar-retained overdentures: a 5-year prospective multicenter study. Clin Oral Implants Res. 2011 Oct;22(10):1117-24. http://dx.doi.org/10.1111/j.1600-0501.2010.02079.x. PMid:21251077.

Zanatta LC, Dib LL, Gehrke SA. Photoelastic stress analysis surrounding different implant designs under simulated static loading. J Craniofac Surg. 2014 May;25(3):1068-71. http://dx.doi.org/10.1097/SCS.0000000000000829. PMid:24777027.

Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand. 1981 Oct;52(5):481-90. http://dx.doi.org/10.3109/17453678108992136. PMid:7331784.

Bal BT, Caglar A, Aydin C, Yilmaz H, Bankoglu M, Eser A. Finite element analysis of stress distribution with splinted and nonsplinted maxillary anterior fixed prostheses supported by zirconia or titanium implants. Int J Oral Maxillofac Implants. 2013 Jan-Feb;28(1):e27-38. http://dx.doi.org/10.11607/jomi.2442. PMid:23377079.

Djebbar N, Serier B, Bouiadjra BB, Benbarek S, Drai A. Analysis of the effect of load direction on the stress distribution in dental implant. Mater Des. 2010 Apr;31(4):2097-101. http://dx.doi.org/10.1016/j.matdes.2009.10.042.

Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent. 2008 Jul;36(7):463-71. http://dx.doi.org/10.1016/j.jdent.2008.03.010. PMid:18455859.
 

5b97b4de0e8825ec7f88baca rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections