Revista de Odontologia da UNESP
ISSN 1807-2577 (Eletrônico)
Artigo Original

Micro-CT analysis of filling ability and porosity of root-end filling materials

Análise em micro-CT da capacidade de preenchimento e porosidade de materiais retrobturadores

Mário TANOMARU-FILHO; Camila Galletti ESPIR; Katia Cristina Toledo NOGUEIRA; Fernanda Ferrari Esteves TORRES; Juliane Maria GUERREIRO-TANOMARU

Abstract

Abstract: Introduction: Filling ability of retrograde cavity and porosity are important properties for root-end filling materials and may be evaluated by using microcomputed tomography (micro-CT).

Objective: To evaluate filling ability and porosity of root-end filling materials using microcomputed tomography (micro-CT).

Material and method: Cavities with 1 mm internal diameter and 3 mm depth were prepared in bovine dentin sections by using ultrasonic tips (CVD No. 6.1107-6), and filled by Mineral Trioxide Aggregate (MTA); Sealer 26 (S26) and zinc oxide and eugenol cement (ZOE). Before and after filling, cavities were scanned by using micro-CT (SkyScan 1176). Filling and porosity were analyzed by using CTAn software. Filling ability was calculated based on volumetric percentage of the filled cavity. The number and percentage of closed pores were measured throughout entire extension of the filled cavity (total) and in each third (cervical, middle and apical), by using bi and tridimensional analyses. The filling data were submitted to ANOVA and Tukey statistical tests, and porosity data to Kruskall-Wallis and Dunn tests, at a 5% significance level.

Result: S26 and ZOE presented higher filling ability than MTA (p<0.05). S26 showed the highest total porosity (number and percentage) (p<0.05). In all thirds after 2D and 3D analyses, porosity was higher for S26 in comparison to MTA and ZOE (p<0.05).

Conclusion: Although Sealer 26 presented more porosity, the material was associated with a great filling ability. Micro-CT analysis showed no correlation between filling ability and porosity.

Keywords

X-Ray Microtomography, porosity, dental materials, endodontics

Resumo

Resumo: Introdução: Capacidade de preenchimento da cavidade retrógrada e porosidade são propriedades importantes de materiais retrobturadores e podem ser avaliadas por meio de microtomografia computadorizada (micro-CT).

Objetivo: Avaliar a capacidade de preenchimento e porosidade de materiais retrobturadores por meio de micro-CT.

Material e método: Cavidades com 1 mm de diâmetro e 3 mm de altura foram preparadas em dentina bovina utilizando pontas ultrassônicas (CVD No. 6.1107-6) e foram preenchidas com Mineral Trióxido Agregado (MTA), Sealer 26 (S26) e cimento de óxido de zinco e eugenol (OZE). As cavidades foram escaneadas em micro-CT antes e após o preenchimento. A capacidade de preenchimento foi calculada com base na porcentagem em volume, das cavidades preenchidas. O número e porcentagem dos poros fechados foram avaliados em toda extensão da cavidade preenchida (total) e por terços (cervical, médio e apical) por meio de análises bi e tridimensionais. Os dados de preenchimento foram submetidos aos testes estatísticos ANOVA e Tukey e a porosidade aos testes de Kruskall-Wallis e Dunn, com nível de significância de 5%.

Resultado: S26 e OZE apresentaram maior capacidade de preenchimento que o MTA (p<0,05). S26 mostrou maior porosidade total (em número e porcentagem) (p<0,05). Em todos os terços, após as análises 2D e 3D, a porosidade foi maior para S26 em comparação ao MTA e OZE (p<0,05).

Conclusão: Embora Sealer 26 tenha apresentado maior porosidade, o material foi associado a uma adequada capacidade de preenchimento. A análise em micro-CT mostrou ausência de correlação entre capacidade de preenchimento e porosidade.
 

Palavras-chave

Microtomografia por Raio-X, porosidade, materiais dentários, endodontia

Referências

1 Jung M, Lommel D, Klimek J. The imaging of root canal obturation using micro-CT. Int Endod J. 2005 Sep;38(9):617-26. PMid:16104975. http://dx.doi.org/10.1111/j.1365-2591.2005.00990.x.

2 Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests. J Appl Oral Sci. 2017 Jul-Aug;25(4):374-80. PMid:28877275. http://dx.doi.org/10.1590/1678-7757-2016-0454.

3 Gandolfi MG, Parrilli AP, Fini M, Prati C, Dummer PM. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int Endod J. 2013 Mar;46(3):253-63. PMid:23039158. http://dx.doi.org/10.1111/j.1365-2591.2012.02124.x.

4 Cavenago CB, Pereira TC, Duarte MA, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder to-water ratio on radiopacity, setting time, pH, calcium ion release, and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014 Feb;47(2):120-6. PMid:23647286. http://dx.doi.org/10.1111/iej.12120.

5 Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater. 2007 Jun;23(6):674-8. PMid:16860859. http://dx.doi.org/10.1016/j.dental.2006.06.006.

6 Mutal L, Gani O. Presence of pores and vacuoles in set endodontic sealers. Int Endod J. 2005 Oct;38(10):690-6. PMid:16164682. http://dx.doi.org/10.1111/j.1365-2591.2005.00988.x.

7 Camilleri J, Grech L, Galea K, Keir D, Fenech M, Formosa L, et al. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin Oral Investig. 2014;18(5):1437-46. PMid:24100638. http://dx.doi.org/10.1007/s00784-013-1124-y.

8 Kerckhofs G, Schrooten J, Van Cleynenbreugel T, Lomov SV, Wevers M. Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum. 2008 Jan;79(1):013711. PMid:18248043. http://dx.doi.org/10.1063/1.2838584.

9 N’Diaye M, Degeratu C, Bouler JM, Chappard D. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images. Mater Sci Eng C Mater Biol Appl. 2013 May;33(4):2025-30. PMid:23498228. http://dx.doi.org/10.1016/j.msec.2013.01.020.

10 De Souza ET, Nunes Tameirão MD, Roter JM, De Assis JT, De Almeida Neves A, De-Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc Res Tech. 2013 Oct;76(10):1093-8. PMid:23913667. http://dx.doi.org/10.1002/jemt.22270.

11 Carvalho-Júnior JR, Guimarães LFL, Correr-Sobrinho L, Pécora JD, Sousa-Neto MD. Evaluation of solubility, disintegration, and dimensional alterations of a glass ionomer root canal sealer. Braz Dent J. 2003;14(2):114-8. PMid:12964655. http://dx.doi.org/10.1590/S0103-64402003000200008.

12 Chittoni SB, Martini T, Wagner MH, Da Rosa RA, Cavenago BC, Duarte MA, et al. Back-scattered electron imaging for leakage analysis of four retrofilling materials. Microsc Res Tech. 2012 Jun;75(6):796-800. PMid:22147679. http://dx.doi.org/10.1002/jemt.21128.

13 Tanomaru-Filho M, Luis MR, Leonardo MR, Tanomaru JM, Silva LA. Evaluation of periapical repair following retrograde filling with different root-end filling materials in dog teeth with periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Jul;102(1):127-32. PMid:16831685. http://dx.doi.org/10.1016/j.tripleo.2005.09.008.

14 El-Ma’aita AM, Qualtrough AJ, Watts DC. A micro–computed tomography evaluation of Mineral Trioxide Aggregate root canal fillings. J Endod. 2012 May;38(5):670-2. PMid:22515899. http://dx.doi.org/10.1016/j.joen.2012.01.009.

15 Siqueira J Jr, Roccas I, Abad E, Castro A, Gahyva S, Favieri A. Ability of three root-end filling materials to prevent bacterial leakage. J Endod. 2001 Nov;27(11):673-5. PMid:11718135. http://dx.doi.org/10.1097/00004770-200111000-00005.

16 Amoroso-Silva PA, Marciano MA, Guimarães BM, Duarte MA, Sanson AF, Moraes IG. Apical adaptation, sealing ability and push-out bond strength of five root-end filling materials. Braz Oral Res. 2014;28(1):1-6. PMid:25166765. http://dx.doi.org/10.1590/1807-3107BOR-2014.vol28.0043.

17 Sousa-Neto MD, Guimarães LF, Gariba Silva R, Saquy PC, Pécora JD. The influence of different grades of rosins and hydrogenated resins on the powder-liquid ratio of Grossman cements. Braz Dent J. 1998;9(1):11-8. PMid:9835799.

18 Wuchenich G, Meadows D, Torabinejad M. A comparison between two root end preparation techniques in human cadavers. J Endod. 1994 Jun;20(6):279-82. PMid:7931024. http://dx.doi.org/10.1016/S0099-2399(06)80816-2.

19 Dias HB, Bernardi MIB, Ramos MADS, Trevisan TC, Bauab TM, Hernandes AC, et al. Zinc oxide 3D microstructures as an antimicrobial filler content for composite resins. Microsc Res Tech. 2017 Jun;80(6):634-43. PMid:28271628. http://dx.doi.org/10.1002/jemt.22840.

20 Prado M, Simao RA, Gomes BP. A microleakage study of gutta-percha/AH Plus and Resilon/Real self-etch systems after different irrigation protocols. J Appl Oral Sci. 2014 Jun;22(3):174-9. PMid:25025557. http://dx.doi.org/10.1590/1678-775720130174.

21 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004 Nov;24(6):1679-91. PMid:15537976. http://dx.doi.org/10.1148/rg.246045065.

22 Mendoza F, Verboven P, Mebatsion HK, Kerckhofs G, Wevers M, Nicolai B. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta. 2007 Aug;226(3):559-70. PMid:17361459. http://dx.doi.org/10.1007/s00425-007-0504-4.

23 Camilleri J. Evaluation of selected properties of mineral trioxide aggregate sealer cement. J Endod. 2009 Oct;35(10):1412-7. PMid:19801242. http://dx.doi.org/10.1016/j.joen.2009.07.008.
 

5a296bfa0e88256e76b9cfea rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections