Revista de Odontologia da UNESP
http://revodontolunesp.com.br/article/doi/10.1590/1807-2577.06017
Revista de Odontologia da UNESP
Original Article

Desenvolvimento de lesões de cárie em dentina em um modelo de biofilme simplificado in vitro: um estudo piloto

Development of dentin caries lesions in an in vitro simplified biofilm model: a pilot study

Thais Piccolo CARVALHO; Tamires Timm MASKE; Cácia SIGNORI; Katielle Valente BRAUNER; Elenara Ferreira de OLIVEIRA; Maximiliano Sérgio CENCI

Downloads: 1
Views: 383

Resumo

Introdução: Modelos laboratoriais de biofilmes vêm sendo desenvolvidos com a finalidade de simular o ambiente bucal e o processo de formação da cárie dental.

Objetivo: Estabelecer e padronizar um modelo de biofilme in vitro para o desenvolvimento de lesões de cárie em dentina.

Material e método: Doze discos padronizados de dentina bovina foram divididos em três tempos experimentais: 4, 7 e 10 dias. As amostras de cada tempo experimental foram inoculadas com Streptococcus mutans UA 159 em meio de cultura BHI com 1% de sacarose e cultivadas em anaerobiose. As variáveis de resposta foram a perda de dureza integrada (ΔS) dos discos de dentina e dureza do substrato em diferentes profundidades. Os dados de ΔS foram analisados através de ANOVA seguido do teste Tukey, ambos com significância de 5%, e os dados de dureza de profundidade de lesão analisados descritivamente.

Resultado: Houve maior perda mineral aos 10 dias de crescimento microbiológico quando comparados aos 4 dias (p = 0,034), no entanto não houve diferença entre 7 e 10 dias (p = 0,853). O grupo de 4 dias mostrou perda de dureza em regiões mais superficiais (10-40µm); e o grupo de 10 dias mostrou desmineralização em áreas mais profundas, até 150 µm.

Conclusão: O modelo proposto mostrou-se capaz de desenvolver lesões de cárie artificiais em dentina. Em 7 dias, as lesões subsuperficiais de dentina foram adequadas para estudos de des-remineralização.

Palavras-chave

Placa dentária, cárie dentária, desmineralização, dentina

Abstract

Introduction: Oral laboratory biofilm models have been developed to reproduce the oral environment and the process of caries lesion formation in vitro.

Objective: To establish and standardize an in vitro biofilm model for the development of caries lesions in dentin.

Material and method: Twelve standardized bovine dentin discs were assigned into three experimental times: 4, 7, and 10 days. Samples of each experimental period were inoculated with Streptococcus mutans UA 159 in a BHI culture medium with 1% sucrose, and cultured under anaerobic conditions. The integrated hardness loss (ΔS) of dentin discs and the hardness of the substrate at different depths were considered as response variables. The ΔS data were analysed by ANOVA followed by Tukey's test, both with significance level of 5%, and the data of hardness at different depths were analysed descriptively.

Result: There was a higher hardness loss after 10 days of microbial growth when compared to 4 days (p = 0.034), however, there was no difference between 7 and 10 days (p = 0.853). The 4-day group showed loss of hardness of the surface layers (10-40μm) and the 10-day group showed demineralization in the deeper area around 150µm.

Conclusion: The proposed model was able to develop artificial caries lesions in dentin. In 7 days, the dentin sub superficial lesions were suitable to des-remineralisation studies.
 

Keywords

Dental plaque, dental caries, demineralization, dentin

References

Maske TT, van de Sande FH, Arthur RA, Huysmans MCDNJM, Cenci MS. In vitro biofilm models to study dental caries: a systematic review. Biofouling. 2017 Sep;33(8):661-75. PMid:28792234. http://dx.doi.org/10.1080/08927014.2017.1354248.

Zero DT, Fontana M, Martinez-Mier EA, Ferreira-Zandona A, Ando M, Gonzalez-Cabezas C, et al. The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States. J Am Dent Assoc. 2009 Sep;140(Suppl 1):25S-34S. PMid:19723928. http://dx.doi.org/10.14219/jada.archive.2009.0355.

Sheiham A, James WP. Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res. 2015 Oct;94(10):1341-7. PMid:26261186. http://dx.doi.org/10.1177/0022034515590377.

Moynihan P. Sugars and dental caries: evidence for setting a recommended threshold for intake. Adv Nutr. 2016 Jan;7(1):149-56. PMid:26773022. http://dx.doi.org/10.3945/an.115.009365.

Moynihan PJ, Kelly SA. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res. 2014 Jan;93(1):8-18. PMid:24323509. http://dx.doi.org/10.1177/0022034513508954.

Campos PH, Sanabe ME, Rodrigues JA, Duarte DA, Santos MT, Guare RO, et al. Different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses. Microsc Res Tech. 2015 Jun;78(6):444-51. PMid:25783414. http://dx.doi.org/10.1002/jemt.22493.

Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, et al. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol. 2012 Dec;113(6):1540-53. PMid:22925110. http://dx.doi.org/10.1111/j.1365-2672.2012.05439.x.

Tang G, Yip H-K, Cutress TW, Samaranayake LP. Artificial mouth model systems and their contribution to caries research: a review. J Dent. 2003 Mar;31(3):161-71. PMid:12726700. http://dx.doi.org/10.1016/S0300-5712(03)00009-5.

van de Sande FH, Azevedo MS, Lund RG, Huysmans MC, Cenci MS. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies. Biofouling. 2011 Oct;27(9):1057-63. PMid:22044385. http://dx.doi.org/10.1080/08927014.2011.625473.

Wong L, Sissions CH. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. Arch Oral Biol. 2001 Jun;46(6):477-86. PMid:11311195. http://dx.doi.org/10.1016/S0003-9969(01)00016-4.

Botelho JN, Villegas-Salinas M, Troncoso-Gajardo P, Giacaman RA, Cury JA. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm: caries model. Braz Oral Res. 2016 May;30(1):1-8. PMid:27223133. http://dx.doi.org/10.1590/1807-3107BOR-2016.vol30.0052.

Fernández CE, Tenuta LM, Cury JA. Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization. PLoS One. 2016 Jan;11(1):e0146478. PMid:26731743. http://dx.doi.org/10.1371/journal.pone.0146478.

Marquezan M, Corrêa FN, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol. 2009 Dec;54(12):1111-7. PMid:19878926. http://dx.doi.org/10.1016/j.archoralbio.2009.09.007.

Giacaman RA, Campos P, Munoz-Sandoval C, Castro RJ. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch Oral Biol. 2013 Sep;58(9):1116-22. PMid:23631998. http://dx.doi.org/10.1016/j.archoralbio.2013.03.005.

Muñoz-Sandoval C, Munoz-Cifuentes MJ, Giacaman RA, Ccahuana-Vasquez RA, Cury JA. Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization. Pediatr Dent. 2012 Nov-Dec;34(7):e197-201. PMid:23265155.

Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LM, Cury JA. A three-species biofilm model for the evaluation of enamel and dentin demineralization. Biofouling. 2014;30(5):579-88. PMid:24730462. http://dx.doi.org/10.1080/08927014.2014.905547.

Sousa RP, Zanin IC, Lima JP, Vasconcelos SM, Melo MA, Beltrao HC, et al. In situ effects of restorative materials on dental biofilm and enamel demineralisation. J Dent. 2009 Jan;37(1):44-51. PMid:19026481. http://dx.doi.org/10.1016/j.jdent.2008.08.009.

Box GE, Hunter WG, Hunter JS. Statistics for experimenters:: an introduction to design, data analysis and model building. New York: Wiley; 1978.

McBain AJ. Chapter 4: in vitro biofilm models: an overview. Adv Appl Microbiol. 2009;69:99-132. PMid:19729092. http://dx.doi.org/10.1016/S0065-2164(09)69004-3.

Sissons CH. Artificial dental plaque biofilm model systems. Adv Dent Res. 1997 Apr;11(1):110-26. PMid:9524448. http://dx.doi.org/10.1177/08959374970110010201.

Steiner-Oliveira C, Rodrigues LKA, Zanin ICJ, Carvalho CL, Kamiya RU, Hara AT, et al. An in vitro microbial model associated with sucrose to produce dentin caries lesions. Cent Eur J Biol. 2011 Jun;6(3):414-21. http://dx.doi.org/10.2478/s11535-011-0011-2.

Maske TT, Nascimento CN, van de Sande FH, Azevedo MS, Oliveira EF, Cenci MS. The effect of non-restorative treatments on the progression of artificial dentine caries lesions underneath enamel. Rev Odonto Ciênc. 2015 Jun;29(2):40-5. http://dx.doi.org/10.15448/1980-6523.2014.2.12753.

Preston KP, Smith PW, Higham SM. The influence of varying fluoride concentrations on in vitro remineralisation of artificial dentinal lesions with differing lesion morphologies. Arch Oral Biol. 2008 Jan;53(1):20-6. PMid:17920030. http://dx.doi.org/10.1016/j.archoralbio.2007.08.001.

Okuyama K, Nakata T, Pereira PN, Kawamoto C, Komatsu H, Sano H. Prevention of artificial caries: effect of bonding agent, resin composite and topical fluoride application. Oper Dent. 2006 Jan-Feb;31(1):135-42. PMid:16536205. http://dx.doi.org/10.2341/0361-7734(2006)31[135:POACEO]2.0.CO;2.

Tantbirojn D, Feigal RJ, Ko CC, Versluis A. Remineralized dentin lesions induced by glass ionomer demonstrate increased resistance to subsequent acid challenge. Quintessence Int. 2006 Apr;37(4):273-81. PMid:16594358.
 

5a96e2260e88251f361db5bf rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections