Revista de Odontologia da UNESP
http://revodontolunesp.com.br/article/doi/10.1590/1807-2577.04918
Revista de Odontologia da UNESP
Original Article

Avaliação topográfica e in vitro de superfícies de titânio revestidas com vidro bioativo

Topographic and in vitro evaluation of titanium surfaces coated with bioative glass

Vinícius Magalhães BARROS; Leonardo Franchini Pan MARTINEZ; Marcos Augusto de SÁ; Walison Arthuso VASCONCELLOS; Allyson Nogueira MOREIRA

Resumo

Resumo: Objetivo: Avaliar e comparar a rugosidade superficial e a atividade dos osteoblastos em contato com uma nova superfície bioativa e nanoestruturada de titânio grau 4 revestida com vidro bioativo contendo fosfato de cálcio, sintetizada pelo método sol-gel.

Material e método: Sessenta e três discos de titânio, medindo 4 mm de diâmetro por 2 mm de altura, foram preparados e divididos em três grupos: microtexturizado (Ticp - controle); revestido com vidro bioativo e seco a vácuo a 37 °C por 10 dias (BGTi37), e revestido com vidro bioativo e aquecido a 600 °C por cinco horas (BGTi600). Três espécimes de cada grupo foram utilizados para avaliação da topografia superficial e 18 espécimes, para cultura celular.

Resultado: O revestimento de vidro bioativo diminuiu a rugosidade média quando comparado ao titânio microtexturizado. A proporção de células viáveis, a produção de fosfatase alcalina e o grau de mineralização da matriz óssea em contato com os espécimes de titânio do grupo BGTi600 foram significativamente menores em relação aos grupos controle e do titânio microtexturizado.

Conclusão: Apesar de sua marcante menor rugosidade, a superfície BGTi37 apresentou comportamento biológico semelhante a uma superfície de titânio microtexturizada e moderadamente rugosa. A outra superfície experimental (BGTi600), a de menor rugosidade entre todas as testadas, apresentou os piores resultados de ativação dos osteoblastos.

Palavras-chave

Implantes dentários, osseointegração, teste de materiais

Abstract

Abstract: Objective: To evaluate and compare the surface roughness and the activity of the osteoblasts in contact with a new bioactive and nanostructured surface of grade 4 titanium coated with bioactive glass containing calcium phosphate synthesized by the sol-gel method.

Material and method: Sixty-three titanium disks, measuring 4 × 2 mm, were prepared and divided into three groups: rough surface, obtained by sandblasted, large-grit, acid-etched (SLA) treatment (Ticp); SLA surface coated with bioglass and dried in a vacuum at 37 °C for 10 days (BGTi37) and SLA surface coated with bioglass and dried in air at 600 °C for 5 hours (BGTi600). Three specimens of each group were used for evaluation of surface topography and 18 for cell cultures.

Result: The bioactive glass coating decreased the average roughness when compared to rough titanium surface. The proportion of viable cells, the production of alkaline phosphatase and the degree of mineralization of the bone matrix in contact with the titanium specimens of the BGTi600 group was significantly lower in relation to the control and rough titanium surface groups.

Conclusion: Despite its marked lower roughness, BGTi37 surface presented a similar biological behavior to a titanium rough surface obtained by SLA treatment. The other experimental surface (BGTi600), the one with the least roughness among all tested, presented the worst results of osteoblast activation.
 

Keywords

Dental implants, osseointegration, materials testing

References

Koller G, Cook RJ, Thompson ID, Watson TF, Di Silvio L. Surface modification of titanium implants using bioactive glasses with air abrasion technologies. J Mater Sci Mater Med. 2007 Dec;18(12):2291-6. http://dx.doi.org/10.1007/s10856-007-3137-z. PMid:17562133.

Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review. Acta Biomater. 2014 Feb;10(2):557-79. http://dx.doi.org/10.1016/j.actbio.2013.10.036. PMid:24211734.

Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009 Sep;20(Suppl 4):172-84. http://dx.doi.org/10.1111/j.1600-0501.2009.01775.x. PMid:19663964.

Knabe C, Howlett CR, Klar F, Zreiqat H. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. J Biomed Mater Res A. 2004 Oct;71(1):98-107. http://dx.doi.org/10.1002/jbm.a.30130. PMid:15368259.

Pereira KK, Alves OC, Novaes AB Jr, de Oliveira FS, Yi JH, Zaniquelli O, et al. Progression of osteogenic cell cultures grown on microtopographic titanium coated with calcium phosphate and functionalized with a type I collagen-derived peptide. J Periodontol. 2013 Aug;84(8):1199-210. http://dx.doi.org/10.1902/jop.2012.120072. PMid:23088527.

Strąkowska P, Beutner R, Gnyba M, Zielinski A, Scharnweber D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films: coating characterization and first cell biological results. Mater Sci Eng C. 2016 Feb;59:624-35. http://dx.doi.org/10.1016/j.msec.2015.10.063. PMid:26652416.

Klymov A, Song J, Cai X, Te Riet J, Leeuwenburgh S, Jansen JA, et al. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating. Acta Biomater. 2016 Feb;31:368-77. http://dx.doi.org/10.1016/j.actbio.2015.11.061. PMid:26691523.

Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003 Jun;24(13):2161-75. http://dx.doi.org/10.1016/S0142-9612(03)00044-9. PMid:12699652.

Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006 May;27(15):2907-15. http://dx.doi.org/10.1016/j.biomaterials.2006.01.017. PMid:16448693.

Vargas GE, Haro Durand LA, Cadena V, Romero M, Mesones RV, Mačković M, et al. Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med. 2013 May;24(5):1261-9. http://dx.doi.org/10.1007/s10856-013-4892-7. PMid:23430337.

Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005 Aug;26(23):4847-55. http://dx.doi.org/10.1016/j.biomaterials.2005.01.006. PMid:15763264.

Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. 2015 Mar;103(3):969-80. http://dx.doi.org/10.1002/jbm.a.35240. PMid:24862163.

Buser D, Janner SF, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012 Dec;14(6):839-51. http://dx.doi.org/10.1111/j.1708-8208.2012.00456.x. PMid:22897683.

van Velzen FJ, Ofec R, Schulten EA, Ten Bruggenkate CM. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clin Oral Implants Res. 2015 Oct;26(10):1121-8. http://dx.doi.org/10.1111/clr.12499. PMid:25370914.

American Society for Testing and Materials – ASTM. ASTM B600: standard guide for descaling and cleaning titanium titanium alloy surfaces. Philadelphia: ASTM; 1997. p. 6-8.

Domingues RZ, Clark AE, Brennan AB. A sol‐gel derived bioactive fibrous mesh. J Biomed Mater Res. 2001 Jun;55(4):468-74. http://dx.doi.org/10.1002/1097-4636(20010615)55:4<468::AID-JBM1038>3.0.CO;2-T. PMid:11288074.

Eaton P, West P. Atomic force microscopy. Oxford: Oxford University Press; 2010.

Orriss IR, Taylor SE, Arnett TR. Rat osteoblast cultures. Methods Mol Biol. 2012;816:31-41. http://dx.doi.org/10.1007/978-1-61779-415-5_3. PMid:22130920.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec;65(1-2):55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4. PMid:6606682.

Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175-9. http://dx.doi.org/10.1016/0003-2697(84)90320-8. PMid:6424501.

Lin TH, Yang RS, Tang CH, Wu MY, Fu WM. Regulation of the maturation of osteoblasts and osteoclastogenesis by glutamate. Eur J Pharmacol. 2008 Jul;589(1-3):37-44. http://dx.doi.org/10.1016/j.ejphar.2008.04.060. PMid:18538763.

Lavos-Valereto IC, Deboni MCZ, Azambuja N Jr, Marques MM. Evaluation of the titanium Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating on growth and viability of cultured osteoblast-like cells. J Periodontol. 2002 Aug;73(8):900-5. http://dx.doi.org/10.1902/jop.2002.73.8.900. PMid:12211500.

Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000 Apr;21(7):667-81. http://dx.doi.org/10.1016/S0142-9612(99)00242-2. PMid:10711964.

Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009 Mar;30(8):1512-23. http://dx.doi.org/10.1016/j.biomaterials.2008.12.001. PMid:19111896.

Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A. 2008 Jan;84(1):265-72. http://dx.doi.org/10.1002/jbm.a.31469. PMid:17607739.

Andrade AL, Domingues RZ. Cerâmicas bioativas: estado da arte. Quim Nova. 2006;29(1):100-4. http://dx.doi.org/10.1590/S0100-40422006000100019.
 

5b97b5120e88258d7e88bacb rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections