Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.04218
Revista de Odontologia da UNESP
Original Article

Influence of crown and hybrid abutment ceramic materials on the stress distribution of implant-supported prosthesis

Influência do material cerâmico das coroas e dos pilares híbridos na distribuição de tensão de próteses implanto-suportadas

João Paulo Mendes TRIBST; Amanda Maria de Oliveira DAL PIVA; Alexandre Luiz Souto BORGES; Marco Antonio BOTTINO

Downloads: 1
Views: 1020

Abstract

Abstract: Introduction: A new dental implant-abutment design is available with the possibility of improving aesthetic with no compromise of mechanical strength, using perforated CAD/CAM ceramic blocks.

Objective: This study evaluated the influence of crown and hybrid abutment ceramic materials combination on the stress distribution of external hexagon implant supported prosthesis.

Method: Zirconia, lithium disilicate and hybrid ceramic were evaluated, totaling 9 combinations of crown and mesostructure materials. For finite element analysis, a monolithic crown cemented over a hybrid abutment (mesostructure + titanium base) was modeled and screwed onto an external hexagon implant. Models were then exported in STEP format to analysis software, and the materials were considered isotropic, linear, elastic and homogeneous. An oblique load (30°, 300N) was applied to the central fossa bottom and the system’s fixation occurred on the bone’s base.

Result: For crown structure, flexible materials concentrate less stress than rigid ones. In analyzing the hybrid abutment, it presented higher stress values when it was made with zirconia combined with a hybrid ceramic crown. The stress distribution was similar regarding all combinations for the fixation screw and implant.

Conclusion: For external hexagon implant, the higher elastic modulus of the ceramic crowns associated with lower elastic modulus of the hybrid abutment shows a better stress distribution on the set, suggesting a promising mechanical behavior.

Keywords

Ceramics, finite element analysis, dental implants, dental implant-abutment design, dental materials

Resumo

Resumo: Introdução: Um novo design de pilar para implantes dentários está disponível com a possibilidade de melhorar a estética sem comprometer a resistência mecânica, usando blocos cerâmicos perfurados para CAD/CAM.

Objetivo: Este estudo avaliou a influência da combinação de diferentes materiais cerâmicos para coroa e para pilar híbrido na distribuição de tensões de prótese sobre implante hexágono externo.

Método: Zircônia, dissilicato de lítio e cerâmica híbrida foram avaliados, totalizando 9 combinações de materiais para coroa e mesoestrutura. Para análise de elementos finitos, uma coroa monolítica cimentada sobre um pilar híbrido (mesoestrutura + base de titânio) foi modelada sobre um implante de hexágono externo. Os modelos foram exportados em formato STEP para o software de análise, e os materiais foram considerados isotrópicos, lineares, elásticos e homogêneos. Uma carga oblíqua (30°, 300N) foi aplicada no fundo da fossa central e a fixação do sistema ocorreu na base do osso.

Resultado: Para a estrutura da coroa, os materiais flexíveis concentram menos tensão que os rígidos. Ao analisar o pilar híbrido, maiores valores de tensão foram observados quando feito com zircônia combinada com uma coroa de cerâmica híbrida. Em todas as combinações simuladas, a distribuição de tensões foi semelhante para o parafuso de fixação e o implante.

Conclusão: Associar um material cerâmico com elevado módulo elástico para a coroa com um material de menor módulo elástico para o pilar híbrido resulta em menor concentração de tensão máxima principal, sugerindo um comportamento mecânico promissor para o sistema hexágono externo.
 

Palavras-chave

Cerâmica, análise de elementos finitos, implantes dentários, desenho do pilar-implante, materiais dentários

References

Siddiqi A, Duncan WJ, De Silva RK, Zafar S. One-piece zirconia ceramic versus titanium implants in the jaw and femur of a sheep model: a pilot study. BioMed Res Int. 2016;2016:1. http://dx.doi.org/10.1155/2016/6792972. PMid:28058261.

Rodrigues VA, Tribst JPM, Santis LR, Lima DR, Nishioka RS. Influence of angulation and vertical misfit in the evaluation of micro-deformations around implants. Braz Dent Sci. 2017 Jan-Mar;20(1):32-9. http://dx.doi.org/10.14295/bds.2017.v20i1.1311.

Vootla NR, Barla SC, Kumar V, Surapaneni H, Balusu S, Kalyanam S. An evaluation of the stress distribution in screw retained implants of different crown implant ratios in different bone densities under various loads-a FEM study. J Clin Diagn Res. 2016 Jun;10(6):ZC96-101. http://dx.doi.org/10.7860/JCDR/2016/19659.8037. PMid:27504420.

Elsayed A, Wille S, Al-Akhali M, Kern M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent. 2017 Apr;117(4):499-506. http://dx.doi.org/10.1016/j.prosdent.2016.06.018. PMid:27769518.

Kim A, Campbell SD, Viana MA, Knoernschild KL. Abutment material effect on peri-implant soft tissue color and perceived esthetics. J Prosthodont. 2016 Dec;25(8):634-40. http://dx.doi.org/10.1111/jopr.12360. PMid:26398106.

Fuentealba R, Jofré J. Esthetic failure in implant dentistry. Dent Clin North Am. 2015 Jan;59(1):227-46. http://dx.doi.org/10.1016/j.cden.2014.08.006. PMid:25434568.

Stimmelmayr M, Heiß P, Erdelt K, Schweiger J, Beuer F. Fracture resistance of different implant abutments supporting all-ceramic single crowns after aging. Int J Comput Dent. 2017;20(1):53-64. PMid:28294205.

Elshiyab SH, Nawafleh N, Öchsner A, George R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont. 2018 Feb;10(1):65-72. http://dx.doi.org/10.4047/jap.2018.10.1.65. PMid:29503716.

Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res. 2018 Jan;29(1):20-7. http://dx.doi.org/10.1111/clr.13034. PMid:28664585.

Niu X, Rahbar N, Farias S, Soboyejo W. Bio-inspired design of dental multilayers: experiments and model. J Mech Behav Biomed Mater. 2009 Dec;2(6):596-602. http://dx.doi.org/10.1016/j.jmbbm.2008.10.009. PMid:19716103.

Dal Piva AMO, Tribst JPM, Souza ROAE, Borges ALS. Influence of alveolar bone loss and cement layer thickness on the biomechanical behavior of endodontically treated maxillary incisors: a 3-dimensional finite element analysis. J Endod. 2017 May;43(5):791-5. http://dx.doi.org/10.1016/j.joen.2016.11.020. PMid:28343925.

Jongsma LA, de Jager N, Kleverlaan CJ, Pallav P, Feilzer AJ. Shear bond strength of three dual-cured resin cements to dentin analyzed by finite element analysis. Dent Mater. 2012 Oct;28(10):1080-8. http://dx.doi.org/10.1016/j.dental.2012.07.002. PMid:22835549.

Ramos NC, Campos TMB, Paz ISL, Machado JPB, Bottino MA, Cesar PF, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016 Jul;32(7):870-8. http://dx.doi.org/10.1016/j.dental.2016.03.018. PMid:27094589.

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999 Jan;20(1):1-25. http://dx.doi.org/10.1016/S0142-9612(98)00010-6. PMid:9916767.

Madfa AA, Kadir MR, Kashani J, Saidin S, Sulaiman E, Marhazlinda J, et al. Stress distributions in maxillary central incisors restored with various types of post materials and designs. Med Eng Phys. 2014 Jul;36(7):962-7. http://dx.doi.org/10.1016/j.medengphy.2014.03.018. PMid:24834856.

Moon SY, Lim Y-J, Kim M-J, Kwon H-B. Three-dimensional finite element analysis of platform switched implant. J Adv Prosthodont. 2017 Feb;9(1):31-7. http://dx.doi.org/10.4047/jap.2017.9.1.31. PMid:28243389.

Tribst JPM, Dal Piva AMO, Borges ALS. Biomechanical tools to study dental implants: a literature review. Braz Dent Sci. 2016;19(4):5-11. http://dx.doi.org/10.14295/bds.2016.v19i4.1321.

De Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015 Jul;114(1):59-66. http://dx.doi.org/10.1016/j.prosdent.2014.10.015. PMid:25819357.

D’Souza KM, Aras MA. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials. J Indian Prosthodont Soc. 2017 Jan-Mar;17(1):53-60. http://dx.doi.org/10.4103/0972-4052.197938. PMid:28216846.

Belli R, Wendler M, Zorzin JI, Petschelt A, Tanaka CB, Meira J, et al. Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses. Dent Mater. 2016 Sep;32(9):1165-76. http://dx.doi.org/10.1016/j.dental.2016.06.019. PMid:27424270.

Llerena-Icochea AE, Costa RM, Borges A, Bombonatti J, Furuse AY. Bonding polycrystalline zirconia with 10-MDP-containing adhesives. Oper Dent. 2017 May/Jun;42(3):335-41. http://dx.doi.org/10.2341/16-156-L. PMid:28467265.

Zhu J, Rong Q, Wang X, Gao X. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: a finite element analysis. J Prosthet Dent. 2017 May;117(5):646-55. http://dx.doi.org/10.1016/j.prosdent.2016.08.023. PMid:27881319.

Weyhrauch M, Igiel C, Scheller H, Weibrich G, Lehmann KM. Fracture strength of monolithic all-ceramic crowns on titanium implant abutments. Int J Oral Maxillofac Implants. 2016 Mar-Apr;31(2):304-9. http://dx.doi.org/10.11607/jomi.4601. PMid:27004277.

Walia MS, Arora S, Luthra R, Walia PK. Removal of fractured dental implant screw using a new technique: a case report. J Oral Implantol. 2012 Dec;38(6):747-50. http://dx.doi.org/10.1563/AAID-JOI-D-10-00195. PMid:22891679.
 

5b4655120e8825d9137c7588 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections