Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.02723
Revista de Odontologia da UNESP
Original Article

Biomechanical analysis of narrow dental implants for maxillary anterior rehabilitation

Análise biomecânica de implantes de diâmetro reduzido para reabilitação da região anterior da maxila

Carolina dos Santos SANTINONI; Victor Eduardo de Souza BATISTA; Hiskell Francine Fernandes e OLIVEIRA; Cleidiel Aparecido Araújo LEMOS; Ronaldo Silva CRUZ; Fellippo Ramos VERRI

Downloads: 0
Views: 369

Abstract

Introduction: Narrow diameter implants biomechanics knowledge indicates safe dimensions for clinical use.

Objective: Purpose of the present study was biomechanically to compare regular and narrow diameter implants to support single implant-supported prosthesis in the anterior region of the maxilla by 3D finite element analysis (3D-FEA).

Material and method: Four 3D-FEA models were developed form CT scan recompositing and literature data: a bone block in the right upper lateral incisive region with implant and crown. M1: 3.75 x 13 mm, M2: 3.75 x 8.5 mm, M3: 2.9 x 13 mm and M4: 2.9 x 8.5 mm. It was applied load was of 178 N at 0, 30 and 60 degrees in relation to implant long axis. Von Mises stress, maximum principal stress and microdeformation maps were evaluated.

Result: M3 and M4 did show higher tension and higher microdeformation values than M1 and M2, especially when inclined forces were applied. However, M3 presented enhanced biomechanical behavior than M4.

Conclusion: It can be concluded that reduce the diameter of the implants can disadvantage to the biomechanics during the application of forces, but the distribution and intensity of the stresses, as well as the micro deformation values can be improved if the length of the implant is increased.

Keywords

Dental implantation, bone, stress, mechanical, finite element analysis

Resumo

Introdução: O conhecimento da biomecânica de implantes de diâmetro reduzido indica dimensões seguras para uso clínico.

Objetivo: O objetivo do presente estudo foi comparar biomecanicamente implantes de diâmetro regular e reduzido para suporte de próteses implantossuportadas unitárias na região anterior da maxila por meio de análise de elementos finitos 3D (3D-FEA).

Material e método: Quatro modelos 3D-FEA foram desenvolvidos a partir de recomposição de tomografia computadorizada e dados da literatura: um bloco ósseo na região incisiva lateral superior direita com implante e coroa. M1: 3,75 x 13 mm, M2: 3,75 x 8,5 mm, M3: 2,9 x 13 mm e M4: 2,9 x 8,5 mm. Foi aplicada carga de 178 N nos ângulos 0, 30 e 60 graus em relação ao longo eixo do implante. Foram avaliados mapas de tensão de Von Mises, tensão principal máxima e microdeformação. Resultado: M3 e M4 apresentaram maiores valores de tensão e microdeformação que M1 e M2, principalmente quando foram aplicadas forças inclinadas. Porém, M3 apresentou comportamento biomecânico melhor do que M4.

Conclusão: Pode-se concluir que reduzir o diâmetro dos implantes pode prejudicar a biomecânica durante a aplicação de forças, mas a distribuição e intensidade das tensões, bem como os valores de microdeformação podem ser melhorados se o comprimento do implante for aumentado.

Palavras-chave

Implantes dentários, osso, estresse mecânico, análise de elementos, finitos

References

1 Schiegnitz E, Al-Nawas B. Narrow-diameter implants: a systematic review and meta-analysis. Clin Oral Implants Res. 2018 Oct;29(Suppl 16):21-40. http://dx.doi.org/10.1111/clr.13272. PMid:30328192.

2 Anitua E, Saracho J, Begoña L, Alkhraisat MH. Long-term follow-up of 2.5-mm narrow-diameter implants supporting a fixed prostheses. Clin Implant Dent Relat Res. 2016 Aug;18(4):769-77. http://dx.doi.org/10.1111/cid.12350. PMid:25913652.

3 Ioannidis A, Gallucci GO, Jung RE, Borzangy S, Hämmerle CH, Benic GI. Titanium-zirconium narrow-diameter versus titanium regular-diameter implants for anterior and premolar single crowns: 3-year results of a randomized controlled clinical study. J Clin Periodontol. 2015 Nov;42(11):1060-70. http://dx.doi.org/10.1111/jcpe.12468. PMid:26440201.

4 Kilic E, Doganay O. Evaluation of stress in tilted implant concept with variable diameters in the atrophic mandible: three-dimensional finite element analysis. J Oral Implantol. 2020 Feb;46(1):19-26. http://dx.doi.org/10.1563/aaid-joi-D-19-00066. PMid:31647683.

5 Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol. 2000 Apr;71(4):546-9. http://dx.doi.org/10.1902/jop.2000.71.4.546. PMid:10807116.

6 Wilson JP, Johnson TM. Frequency of adequate mesiodistal space and faciolingual alveolar width for implant placement at anterior tooth positions. J Am Dent Assoc. 2019 Sep;150(9):779-87. http://dx.doi.org/10.1016/j.adaj.2019.05.003. PMid:31439205.

7 Ma M, Qi M, Zhang D, Liu H. The clinical performance of narrow diameter implants versus regular diameter implants: a meta-analysis. J Oral Implantol. 2019 Dec;45(6):503-8. http://dx.doi.org/10.1563/aaid-joi-D-19-00025. PMid:31536434.

8 Telles LH, Portella FF, Rivaldo EG. Longevity and marginal bone loss of narrow-diameter implants supporting single crowns: a systematic review. PLoS One. 2019 Nov;14(11):e0225046. http://dx.doi.org/10.1371/journal.pone.0225046. PMid:31710656.

9 Lemos CAA, Verri FR, Santiago JF Jr, Almeida DAF, Batista VE, Noritomi PY, et al. Retention system and splinting on morse taper implants in the posterior maxilla by 3D finite element analysis. Braz Dent J. 2018 Jan-Feb;29(1):30-35. https://doi.org/10.1590/0103-6440201801492.

10 Santiago JF Jr, Verri FR, Almeida DA, de Souza Batista VE, Lemos CA, Pellizzer EP. Finite element analysis on influence of implant surface treatments, connection and bone types. Mater Sci Eng C. 2016 Jun;63:292-300. http://dx.doi.org/10.1016/j.msec.2016.02.061. PMid:27040222.

11 Coelho Goiato M, Pesqueira AA, Falcón-Antenucci RM, Dos Santos DM, Haddad MF, Bannwart LC, et al. Stress distribution in implant-supported prosthesis with external and internal implant-abutment connections. Acta Odontol Scand. 2013 Mar;71(2):283-8. http://dx.doi.org/10.3109/00016357.2012.672823. PMid:22486241.

12 Mangano C, Mangano F, Piattelli A, Iezzi G, Mangano A, La Colla L. Prospective clinical evaluation of 307 single-tooth morse taper-connection implants: a multicenter study. Int J Oral Maxillofac Implants. 2010 Mar-Apr;25(2):394-400. PMid:20369101.

13 Balshi TJ, Hernandez RE, Pryszlak MC, Rangert B. A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants. 1996 May-Jun;11(3):372-8. PMid:8752558.

14 Albrektsson T, Zarb GA. Determinants of correct clinical reporting. Int J Prosthodont. 1998 Sep-Oct;11(5):517-21. PMid:9922743.

15 Ramos Verri F, Santiago JF Jr, de Faria Almeida DA, de Oliveira GB, de Souza Batista VE, Marques Honório H, et al. Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. J Biomech. 2015 Jan;48(1):138-45. http://dx.doi.org/10.1016/j.jbiomech.2014.10.021. PMid:25435384.

16 Verri FR, Batista VE, Santiago JF Jr, Almeida DA, Pellizzer EP. Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis. Mater Sci Eng C. 2014 Dec;45:234-40. http://dx.doi.org/10.1016/j.msec.2014.09.005. PMid:25491825.

17 Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont. 2015 Dec;7(6):475-83. http://dx.doi.org/10.4047/jap.2015.7.6.475. PMid:26816578.

18 Badran Z, Struillou X, Strube N, Bourdin D, Dard M, Soueidan A, et al. Clinical performance of narrow-diameter titanium-zirconium implants: a systematic review. Implant Dent. 2017 Apr;26(2):316-23. http://dx.doi.org/10.1097/ID.0000000000000557. PMid:28114266.

19 Iegami CM, Uehara PN, Sesma N, Pannuti CM, Tortamano Neto P, Mukai MK. Survival rate of titanium-zirconium narrow diameter dental implants versus commercially pure titanium narrow diameter dental implants: a systematic review. Clin Implant Dent Relat Res. 2017 Dec;19(6):1015-22. http://dx.doi.org/10.1111/cid.12527. PMid:28853215.

20 Galindo-Moreno P, Padial-Molina M, Nilsson P, King P, Worsaae N, Schramm A, et al. The influence of the distance between narrow implants and the adjacent teeth on marginal bone levels. Clin Oral Implants Res. 2017 Jun;28(6):704-12. http://dx.doi.org/10.1111/clr.12867. PMid:27154057.

21 Alshiddi IF, Alsahhaf A, Alshagroud RS, Al-Aali KA, Vohra F, Abduljabbar T. Clinical, radiographic, and restorative peri-implant measurements of narrow and standard diameter implants in obese and nonobese patients: a 3-year retrospective follow-up study. Clin Implant Dent Relat Res. 2019 Aug;21(4):656-61. http://dx.doi.org/10.1111/cid.12798. PMid:31172671.

22 Galindo-Moreno P, Nilsson P, King P, Worsaae N, Schramm A, Padial-Molina M, et al. Clinical and radiographic evaluation of early loaded narrow-diameter implants: 5-year follow-up of a multicenter prospective clinical study. Clin Oral Implants Res. 2017 Dec;28(12):1584-91. http://dx.doi.org/10.1111/clr.13029. PMid:28626888.

23 Maiorana C, King P, Quaas S, Sondell K, Worsaae N, Galindo-Moreno P. Clinical and radiographic evaluation of early loaded narrow-diameter implants: 3 years follow-up. Clin Oral Implants Res. 2015;26(1):77-82. http://dx.doi.org/10.1111/clr.12281. PMid:25650268.

24 Demenko V, Linetskiy I, Linetska L, Yefremov O. Load-carrying capacity of short implants in edentulous posterior maxilla: a finite element study. Med Eng Phys. 2019 Sep;71:30-7. http://dx.doi.org/10.1016/j.medengphy.2019.02.003. PMid:31285136.

25 Pellizzer EP, Santiago Jr JF, de Souza Batista VE, Mello CC, Lopes LFTP, Almeida DAF, et al. Influência do aumento do comprimento de implantes dentários. Rev Cir Traumatol Buco-Maxilo-Fac 2013 Jul-Set;13(3):87-94.
 


Submitted date:
10/20/2023

Accepted date:
10/23/2023

6560aef5a953956b4e0015a8 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections