Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.01517
Revista de Odontologia da UNESP
Original Article

Influence of different treatments of the ceramic surface and thermal cycling on the bond strength of brackets to ceramic

Influência de diferentes tratamentos de superfície da cerâmica e ciclagem térmica na resistência de união de bráquetes à cerâmica

Fernando Guerra SÁEZ; Ana Rosa COSTA; Adriana Simoni LUCATO; Ana Paula Terossi de GODOI; Lourenço CORRER-SOBRINHO; Silvia Amélia Scudeler VEDOVELLO

Downloads: 2
Views: 1082

Abstract

Abstract: Objective: To evaluate in vitro the effect of different treatments of the ceramic surface and thermal cycling on the shear bond strength (SBS) of metallic brackets bonded to feldspathic ceramic.

Material and method: Ceramic cylinders were divided into four groups (n=4) according to the treatment of ceramic surface: G1-Clearfil Ceramic Primer silane and Transbond XT (CCPT); G2-etched with 10% hydrofluoric acid (HFA) for 60 s, CCP and Transbond XT (ACCPT); G3-etched with 10% HFA for 60 s, Ambar Adhesive and Transbond XT (AAAT); and, G4 - etched with 10% HFA for 60 s, RelyX Ceramic Primer silane -RCP, adhesive primer Transbond and Transbond XT (ACPPT). Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with LED Radii Plus. All specimens were stored in deionized water at 37 °C for 24 h, and two cylinders from each group were subject to 7,000 thermal cycles in a thermal cycler (5 °C/55 °C). After storage and thermal cycling, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to two-way ANOVA and Tukey’s post hoc test (α=0.05).

Result: The SBS of ACCPT was significantly higher than the other groups (p<0.05). The specimens submitted to thermal cycling showed significantly lower SBS than those without thermal cycling (p<0.05), regardless the ceramic surface treatment. The ARI showed predominance of score 0 for all groups.

Conclusion: Acid etching, CCP silane and Transbond XT method obtained the best results for bracket bonding. Thermal cycling reduced SBS for all groups. Score 0 was predominant for ARI in all groups.

Keywords

Shear strength, orthodontic brackets, silane, adhesive, ceramic

Resumo

Resumo: Objetivo: Avaliar in vitro o efeito de diferentes tratamentos de superfície da cerâmica e ciclagem térmica na resistência da união ao cisalhamento (RUC) de bráquetes metálicos colados na cerâmica felspática.

Material e método: Cilindros cerâmicos foram separados em 4 grupos (n=4) de acordo com os tratamentos da superfície da cerâmica: G1-Clearfil Ceramic Primer silano e Transbond XT (CCPT); G-condicionamento com ácido hidrofluorídrico a 10% (AHF) por 60s, CCP e Transbond XT (ACCPT); G3-condicionamento com AHF a 10% por 60s, Adesivo Ambar e Transbond XT (AAAT); e, G4 condicionamento com AHF a 10% por 60s, RelyX Ceramic Primer silano, primer adesivo Transbond e Transbond XT (ACPAT). Os bráquetes foram fixados nos cilindros com Transbond XT e fotoativado por 40s com LED Radii Plus. Todas as amostras foram armazenadas em água deionizada a 37 °C por 24 h e dois cilindros de cada grupo foram submetidos a 7.000 ciclos térmicos na máquina para ciclagem térmica (5 °C/55 °C). Após armazenagem e ciclagem térmica, a RUC foi realizada à velocidade de 1 mm/min. Na Análise de Variância de 2 fatores e ao teste de Tukey’s post hoc test (α=0,05) a RUC do G2 foi significante maior do que dos demais grupos (p<0,05).

Resultado: As amostras submetidas à ciclagem térmica apresentaram valores de RUC significantemente menores do que as amostras sem ciclagem térmica (p<0,05), independente do tratamento de superfície da cerâmica.

Conclusão: Nas condições desse estudo o melhor resultado para colagem foi obtido com o condicionamento, silano CCP e Transbond XT. A ciclagem térmica reduziu a RUC em todos os grupos.
 

Palavras-chave

Resistência de união, bráquetes ortodônticos, silano, adesivo, cerâmica

References

Sundfeld D, Correr-Sobrinho L, Pini NIP, Costa AR, Sundfeld RH, Pfeifer CS, et al. Heat treatment-improved bond strength of resin cement to lithium disilicate dental glass-ceramic. Ceram Int. 2016 Jun;42(8):10071-8. http://dx.doi.org/10.1016/j.ceramint.2016.03.112.

Matos NR, Costa AR, Valdrighi HC, Correr AB, Vedovello SA, Santamaria M Jr, et al. Effect of acid etching, silane and thermal cycling on the bond strength of metallic brackets to ceramic. Braz Dent J. 2016 Oct-Dec;27(6):734-8. PMid:27982187. http://dx.doi.org/10.1590/0103-6440201601077.

Costa AR, Correr AB, Puppin-Rontani RM, Vedovello SA, Valdrighi HC, Correr-Sobrinho L, et al. Effect of bonding material, etching time and silane on the bond strength of metallic orthodontic brackets to ceramic. Braz Dent J. 2012;23(3):223-7. PMid:22814690. http://dx.doi.org/10.1590/S0103-64402012000300007.

Abreu HF No, Costa AR, Correr AB, Vedovello SA, Valdrighi HC, Santos EC, et al. Influence of light source, thermocycling and silane on the shear bond strength of metallic brackets to ceramic. Braz Dent J. 2015;26(6):685-8. PMid:26963217. http://dx.doi.org/10.1590/0103-6440201300416.

Costa AR, Correr AB, Consani S, Giorgi MC, Vedovello SA, Vedovello M Fo, et al. Influence of water storage and bonding material on bond strength of metallic brackets to ceramic. Braz Dent J. 2015 Oct;26(5):503-6. PMid:26647936. http://dx.doi.org/10.1590/0103-6440201300403.

Xiaoping L, Dongfeng R, Silikas N. Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic. Dent Mater. 2014 Dec;30(12):e330-6. PMid:25189110. http://dx.doi.org/10.1016/j.dental.2014.08.373.

Phoenix RD, Shen C. Characterization of treated porcelain surfaces via dynamic contact angle analysis. Int J Prosthodont. 1995 Mar-Apr;8(2):187-94. PMid:7575970.

Jardel V, Degrange M, Picard B, Derrien G. Surface energy of etched ceramic. Int J Prosthodont. 1999 Sep-Oct;12(5):415-8. PMid:10709522.

Sundfeld D No, Naves LZ, Costa AR, Correr AB, Consani S, Borges GA, et al. The effect of hydrofluoric acid concentration on the bond strength and morphology of the surface and interface of glass ceramics to a resin cement. Oper Dent. 2015 Sep-Oct;40(5):470-9. PMid:25764043. http://dx.doi.org/10.2341/14-133-L.

Ozcan M, Allahbeickaraghi A, Dündar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Investig. 2012 Feb;16(1):15-23. PMid:22065247. http://dx.doi.org/10.1007/s00784-011-0636-6.

Guarda GB, Correr AB, Gonçalves LS, Costa AR, Borges GA, Sinhoreti MA, et al. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper Dent. 2013 Mar-Apr;38(2):208-17. PMid:22856682. http://dx.doi.org/10.2341/11-076-L.

Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014 Jul;30(7):e147-62. PMid:24612840. http://dx.doi.org/10.1016/j.dental.2014.01.017.

Spohr AM, Sobrinho LC, Consani S, Sinhoreti MA, Knowles JC. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic. Int J Prosthodont. 2003 May-Jun;16(3):277-82. PMid:12854792.

Sundfeld D, Correr-Sobrinho L, Pini NI, Costa AR, Sundfeld RH, Pfeifer CS, et al. The effect of hydrofluoric acid concentration and heat on the bonding to lithium disilicate glass ceramic. Braz Dent J. 2016 Oct-Dec;27(6):727-33. PMid:27982186. http://dx.doi.org/10.1590/0103-6440201601024.

Litovitz TL, Klein-Schwartz W, Dyer KS, Shannon M, Lee S, Powers M. 1997 annual report of the american association of poison control centers toxic exposure surceillance system. Am J Emerg Med. 1998 Sep;16(5):443-97. PMid:9725964. http://dx.doi.org/10.1016/S0735-6757(98)90000-6.

Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999 Feb;27(2):89-99. PMid:10071465. http://dx.doi.org/10.1016/S0300-5712(98)00037-2.

Artun J, Bergland S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod. 1984 Apr;85(4):333-40. PMid:6231863. http://dx.doi.org/10.1016/0002-9416(84)90190-8.

Salvio LA, Correr-Sobrinho L, Consani S, Sinhoreti MA, Goes MF, Knowles JC. Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic. J Prosthodont. 2007 May-Jun;16(3):192-9. PMid:17581181. http://dx.doi.org/10.1111/j.1532-849X.2006.00171.x.

Brum R, Mazur R, Almeida J, Borges G, Caldas D. The influence of surface standardization of lithium disilicate glass ceramic on bond strength to a dual resin cement. Oper Dent. 2011 Sep-Oct;36(5):478-85. PMid:21819200. http://dx.doi.org/10.2341/11-009-L.

Calamia JR. Clinical evaluation of etched porcelain veneers. Am J Dent. 1989 Feb;2(1):9-15. PMid:2597374.

Yoshida K, Yamashita M, Atsuta M. Zirconate coupling agent for bonding resin luting cement to pure zirconium. Am J Dent. 2004 Aug;17(4):249-52. PMid:15478485.

Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dual-cured resin cement to glass ceramics. Dent Mater. 2002 Jul;18(5):380-8. PMid:12175577. http://dx.doi.org/10.1016/S0109-5641(01)00054-9.

Reynolds IR. Letter: composite filling materials as adhesives in orthodontics. Br Dent J. 1975 Feb;138(3):83. PMid:1089421. http://dx.doi.org/10.1038/sj.bdj.4803387.

Vásquez V, Ozcan M, Nishioka R, Souza R, Mesquita A, Pavanelli C. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium. Dent Mater J. 2008 Jan;27(1):7-15. PMid:18309606. http://dx.doi.org/10.4012/dmj.27.7.
 

595a2fe30e8825914780248d rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections