Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588019627f8c9d0a098b510f
Revista de Odontologia da UNESP
Original Article

Comportamento biomecânico do sistema prótese/implante em região anterior de maxila: análise pelo método de ciclagem mecânica

Mechanical behavior of prostheses / implant system in the anterior region of maxilla: analysis by the method of cycling mechanics

Tabuse, Henrique Eiji; Corrêa, Cassia Belloto; Vaz, Luis Geraldo

Downloads: 0
Views: 1188

Resumo

Introdução: O adequado posicionamento tridimensional dos implantes é indispensável para garantir a previsibilidade no tratamento com implantes dentários. Objetivo: Analisar comparativamente o comportamento mecânico do sistema prótese/implante em região anterior de maxila, diferindo os sistemas de encaixe e posicionamento dos implantes. Material e método: Utilizando um modelo prototipado de maxila, as situações estudadas foram: Grupo IC - implantes nos incisivos centrais e cantilever nos incisivos laterais; Grupo IL - implantes nos incisivos laterais e pônticos nos incisivos centrais; Grupo ICIL - implantes no incisivo central e no incisivo lateral, intercalados com elementos suspensos. Para cada situação estudada, foram utilizadas as três conexões protéticas: hexágono externo, hexágono interno e cone-Morse. O ensaio de ciclagem mecânica foi realizado com a aplicação de 100 N de carga e frequência de 15 Hz no cíngulo dos incisivos a 45° com o longo eixo do dente, para simular o movimento mastigatório. Resultado: No ensaio de ciclagem mecânica, todos os modelos de todos os grupos com os três tipos de conexões protéticas atingiram um milhão de ciclos sem que ocorresse ruptura do parafuso, do componente protético ou da estrutura metálica. Conclusão: Com a metodologia e as condições empregadas, pode‑se concluir que o comportamento mecânico das reabilitações implantossuportadas foi semelhante para os diferentes posicionamentos dos implantes e diferentes conexões protéticas.

Palavras-chave

Implantação dentária, prótese dentária fixada por implante, estresse mecânico

Abstract

Introduction: The adequate three-dimensional positioning of implants is essential to ensure predictability in dental implant treatment. Purpose: Was to comparatively evaluate the mechanical behavior of the system prosthesis/ implant in the anterior maxilla, differing the prosthetic connection and the placement of implants. Material and method: By a maxilla prototyped model the situations were studied: Group IC- implants in the central incisor positions and cantilevers in the lateral incisor positions; Group IL - implants in the lateral incisor positions and pontics in the central incisor positions; Group ICIL one implant in a lateral and one in a central incisor position, with a pontic and a cantilever in the other positions. For each situations were used the prosthetic connections, external hexagon, internal hexagon and Morse-taper. In fatigue test was applied load 100N of frequency 15Hz in the incisors cingulum 45° to the long axis of the tooth to simulate a masticatory movement. Result: After the fatigue test all models of all groups with all three types of connections prosthetic reached 1 million cycles without rupture occurred screw, prosthetic component or metallic structure. Conclusion: According to methodology and conditions studied, can be concluded that the mechanical behavior of the implant-supported rehabilitation was similar to the different positions of the dental implants and the different prosthetic connections.

Keywords

Dental implantation; dental prosthesis; stress, mechanical.

References

1. Jemt T, Lekholm U, Adell R. Osseointegrated implants in treatment of patients with missing teeth--preliminary study of 876 implants. Quintessenz. 1990; 41: 1935-46.

2. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent. 2005; 14: 108-16. http://dx.doi.org/10.1097/01.id.0000165033.34294.db

3. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent. 1983; 49: 843-8. http://dx.doi.org/10.1016/0022-3913(83)90361-X

4. Baggi L, Cappelloni I, Di Girolama M. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a threedimensional finite element analysis. J Prosthet Dent. 2008; 100: 422-31. http://dx.doi.org/10.1016/S0022-3913(08)60259-0

5. Barbier L, Schepers E. Adaptative bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants. 1997; 12: 215-23.

6. Askary AS. Multifaceted aspects of implant esthetics: the anterior maxilla. Implant Dent. 2001; 10: 182-91. http://dx.doi.org/10.1097/00008505-200107000-00008

7. Choquet V, Hermans M, Adriaenssens P, Daelemans P, Tarnow DP, Malevez C. Clinical and radiographic evaluation of the papilla level adjacent to single-tooth dental implants: a retrospective study in the maxillary anterior region. J Periodontol. 2001; 72: 1364-71. http://dx.doi.org/10.1902/jop.2001.72.10.1364

8. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol. 2000; 71: 546-9. http://dx.doi.org/10.1902/jop.2000.71.4.546

9. Salama H, Salama MA, Garber D, Adar P. The interproximal height of bone: a guidepost to predictable aesthetic strategies and soft tissue contours in anterior tooth replacement. Pract Periodontics Aesthet Dent Pract. 1998; 10: 1131-41.

10. Gastaldo JF, Cury PR, Sendyk WR. Effect of the vertical and horizontal distances between adjacent implants and between a tooth and a implant on the incidence of interproximal papilla. J Periodontol. 2004; 75: 1242-6. http://dx.doi.org/10.1902/jop.2004.75.9.1242

11. Grunder U, Gracis S, Capelli M. Influence of 3-D bone to implant relationship on esthetic. Int J Periodontics Restorative Dent. 2005; 25: 113-9.

12. Cetlin PR, Silva PSP. Análise de fraturas. São Paulo: Associação Brasileira de Metais;1988.

13. Hoyer SA, Stanford CM, Buranadham S, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants. J Prosthet Dent. 2001; 85: 599-607. http://dx.doi.org/10.1067/mpr.2001.115250

14. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8 degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants. 2000; 15: 519-26.

15. Huang HM, Tsai CM, Chan CC, Lin CT, Lee SY. Evaluation of loading conditions on fatigue-failed implants by fracture surface analysis. Int J Oral Maxilofac Implants. 2005; 20: 854-9.

16. Tsuge T, Higawara Y. Influence of lateral-oblique cyclic loading on abutment screw loosening of internal and external hexagon implants. Dent Mater J. 2009; 28: 373-81. http://dx.doi.org/10.4012/dmj.28.373

17. Correa CB, Pires JR, Fernandes-Filho RB, Sartori R, Vaz LG. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces. J Prosthodont. 2009; 18: 382-7. http://dx.doi.org/10.1111/j.1532-849X.2009.00463.x

18. Basten CHJ, Nicholls JI, Daly CH, Taggart R. Load fatigue performance of two implant-abutment combinations. Int J Oral Maxillofac Implants. 1996; 11: 522-8.

19. Piattelli A, Scarano A, Piattelli M, Vaia E, Matarasso S. Hollow implants retrieved for fracture: a light and scanning electron microscope analysis of 4 cases. J Periodontol. 1998; 69: 185-9. http://dx.doi.org/10.1902/jop.1998.69.2.185

20. McDermott NE, Chuang SK, Woo VV, Dodson TB. Complications of dental implants: identification, frequency, and associated risk factors. Int J Oral Maxillofac Implants. 2003; 18: 848-55.

 

588019627f8c9d0a098b510f rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections