Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588017d87f8c9d0a098b4937
Revista de Odontologia da UNESP
Original Article

Avaliação in vitro do metabolismo de células imortalizadas de linhagem odontoblástica MDPC-23 submetidas à aplicação do laser de baixa potência

In vitro evaluation of the metabolism of the immortalized odontoblast-like cells MDPC-23 submitted to the low power laser therapy

Nícoli, G.A.; Lopes, L.A.; Souza, P.P.C.; Souza, L.B.; Hebling, J.; Costa, C.A.S.

Downloads: 0
Views: 1075

Resumo

Desde que o laser interage com os tecidos, agindo como biomodulador e bioestimulador do processo de reparação, é de se esperar que a terapia com a luz laser possa, de alguma maneira, estimular o metabolismo dos odontoblastos, ativando a síntese de proteínas específicas. Objetivo: avaliar a atividade metabólica das células odontoblastóides MDPC-23 ante à estimulação com laser de baixa intensidade. Material e Método: Células MDPC-23 foram cultivadas em situação normal ou associadas à deficiência nutricional parcial (baixas concentrações de soro fetal bovino - 2,5 e 5%), e, então, foram submetidas à aplicação de luz laser com comprimentos de onda de 830 nm no infravermelho (AsGaAl) e de 685 nm na luz visível (InGaAlP), ambos emitindo radiação contínua e pontual. Finalmente, o metabolismo dessas células foi avaliado pelo teste de MTT, sendo os valores numéricos obtidos submetidos à análise estatística. Resultado: Foi demonstrado que, de acordo com os padrões de irradiação utilizados para este experimento, não houve um aumento significante no metabolismo celular. Conclusão: Foi possível concluir, dentro das condições experimentais, que o metabolismo das células odontoblastóides MDPC-23 é biomodulado pelo laser vermelho e infravermelho próximo quando essas células são colocadas em estado de estresse por deficiência nutricional.

Palavras-chave

Laser de baixa potência, bioestimulação, cultura de células, odontoblastos, metabolismo celular.

Abstract

Since the laser light acts as bio-modulator and bio-stimulator of the healing process, one may expect that a specific laser therapy could also stimulate the odontoblasts to synthesize and deposit dentinal matrix in order to prevent in vivo dentinal sensitivity. Objective: The aim of this study was to evaluate the metabolic activity of an odontoblast-cell line (MDPC-23) submitted to the low power laser therapy. Material and Methods: MDPC-23 cells were platted (3 x 104 cells/cm2) and incubated with complete medium (10% fetal bovine serum – FBS) or with nutritional deficiency (2.5% FBS or 5% FBS) in order to simulate stress conditions for the MDPC-23 cells. The cells were suibmitted to the laser irradiation by using wave lengths of 830 nm in the infra-red ray (AsGaAl) or 685 nm in the visible light (InGaAlP), both emitting continuous and punctual radiation. Finally, the cell metabolism was evaluated by the MTT assay and the numerical scores obtained were submitted to the statistical analysis. Results: It was demonstrated that the standardized experimental techniques of irradiation employed in this experiment caused no significant increase in the cell metabolism. Conclusion: According to the experimental conditions, it was possible to conclude the metabolism of the MDPC-23 odontoblastic-like cells is bio-modulated by the red laser and next infra-red ray when these cells are in stress condition induced by nutritional deficiency.

Keywords

Low power laser, bioestimulation, cell culture, odontoblasts, cell metabolism

References



1. Kubota J, Ohshiro T. The effects of diode laser low reactive level laser therapy (LLLT) on flap survival in a rat model. Laser Therapy. 1989;1:127.

2. Karu TI, Pyatbrat LV, Kalendo GS, Esenaliev RO. Effects of monochromatic low - intensity light and laser irradiation on adhesion of He La cells in vitro. Lasers Surg Med. 1996;18:171-7.

3. Karu TI, Pyatibrat LV, Kalendo GS. Irradiation with He- Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol Biol. 1995;27:219-23.

4. Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cells culture in rat calvarial cells. Bone. 1988;22:347-54.

5. Hamajima K, Hiratsuka M, Kiyama-Kishikawa T, Tagawa M, Kawahara M, Ohta H, et al. Effect of lowlevel laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci. 2003;18(2):78-82.

6. Zhu X, Chen Y, Sun X. A study on expression of basic fibroblast growth factors in periodontal tissue following orthodontic tooth movement associated with low power laser irradiation. Hua Xi Kuo Qiang Yi Xue Za Zhi. 2002;20:166-8.

7. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. J Oral Sci. 2004;34:260-5.

8. Oshiro T, Calderhead RG. The development of low reactive- level laser therapy (LLLT) and its present status. J Clin Laser Med Surg. 1991;9:267-75.

9. Takeda Y. Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Expermental study in rats. Int J Oral Maxillofac Surg. 1988;17:388-91.

10. Sasaki K, Oshiro T. Role of low reactive-level laser therapy (LLLT) in the treatment of acquired and cicatricial vitiligo. Laser Therapy. 1989;1:141-4.

11. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg. 2005;23:161-6.

12. Lopes LA. Análise in vitro da proliferação de fibroblasto de gengiva humana tratado com laser de baixa potência [Tese de Doutorado]. São Carlos: Instituto de Física da USP; 2002.

13. Brugnera JR, Villa RG, Genovese WJ. Laser na odontologia. São Paulo: Pancast; 1991.

14. Kucerova H, Dostalova T, Himminalova L, Bartova J, Mazanek J. Low-level laser therapy after molar extraction. J. Clin Laser Med Surg. 2000;18:309-15.

15. Nara Y, Tsukamoto Y, Fukutani S, YamaguchiI N, Mori M, Morioka T. Stimulative effect of He-Ne laser irradiation on cultured fibroblasts derived from human dental pulp. Laser Life Sci. 1992;4:249-56.

16. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 2005;26:3503- 9.

17. Quin C, Brunn JC, Cadena E, Ridall A, Butler WT. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res. 2003;44(Suppl 1): 179-83.

18. Haas, AF, Isserott RR, Wheeland RG, Rood PA, Graves PJ. Low-energy Helium-Neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol. 1990;94:822-6.

19. Kim KS, Kim JK, Kim SW, Lee JH, Kim YK, Ko SY, et al. Effects of low level laser irradiation (LLLI) with 904 nm pulsed diode laser on osteoblasts a controlled trial with the rat osteoblast model. Laser Therapy. 1996;8:223-32.
588017d87f8c9d0a098b4937 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections